Used to correct data using the mean of a specified time period. For
time-domain data, this will subtract the mean from all data. For eeg_tfr
objects, a variety of methods are available, including subtraction, and
conversion to "dB" change. With a data frame, it will search for "electrode"
and "epoch" columns, and groups on these when found. An electrode column is
always required; an epoch column is not. Note that baseline correction is
always applied on single-trial basis. For baseline correction based on
subtraction, this makes no difference compared to averaging first and then
baseline correcting, but for divisive measures used with time-frequency data,
this distinction can be very important, and can lead to counterintuitive
results.
Usage
rm_baseline(data, time_lim = NULL, ...)
# S3 method for class 'eeg_data'
rm_baseline(data, time_lim = NULL, verbose = TRUE, ...)
# S3 method for class 'eeg_epochs'
rm_baseline(data, time_lim = NULL, verbose = TRUE, ...)
# S3 method for class 'data.frame'
rm_baseline(data, time_lim = NULL, verbose = TRUE, ...)
# S3 method for class 'eeg_tfr'
rm_baseline(data, time_lim = NULL, type = "divide", verbose = TRUE, ...)
# S3 method for class 'eeg_evoked'
rm_baseline(data, time_lim = NULL, verbose = TRUE, ...)
Arguments
- data
Data to be baseline corrected.
- time_lim
Numeric character vector (e.g. time_lim <- c(-.1, 0)) defining the time period to use as a baseline. If the value is NULL, it uses the mean of the whole of each epoch if the data is epoched, or the channel mean if the data is continuous.
- ...
other parameters to be passed to functions
- verbose
Defaults to TRUE. Output descriptive messages to console.
- type
Type of baseline correction to apply. Options are ("divide", "ratio", "absolute", "db", and "pc")
Methods (by class)
rm_baseline(eeg_data)
: remove baseline from continuouseeg_data
rm_baseline(eeg_epochs)
: Remove baseline fromeeg_epochs
rm_baseline(data.frame)
: Legacy method for data.framesrm_baseline(eeg_tfr)
: Method foreeg_tfr
objectsrm_baseline(eeg_evoked)
: Method foreeg_evoked
objects
Author
Matt Craddock matt@mattcraddock.com
Examples
rm_baseline(demo_epochs)
#> Removing channel means per epoch...
#> Epoched EEG data
#>
#> Number of channels : 11
#> Number of epochs : 80
#> Epoch limits : -0.197 - 0.451 seconds
#> Electrode names : A5 A13 A21 A29 A31 B5 B6 B8 B16 B18 B26
#> Sampling rate : 128 Hz
#> Reference : average
rm_baseline(demo_epochs, c(-.1, 0))
#> Baseline: -0.1 - 0s
#> Epoched EEG data
#>
#> Number of channels : 11
#> Number of epochs : 80
#> Epoch limits : -0.197 - 0.451 seconds
#> Electrode names : A5 A13 A21 A29 A31 B5 B6 B8 B16 B18 B26
#> Sampling rate : 128 Hz
#> Reference : average