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Setting up our studies
When we embark on a programme on research, we begin by identifying a research
question.

Do people who have been a victim of crime express higher fear of crime?

Are people faster at saying the names of colours when the names are written in the
same colour?
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Null Hypothesis Significance Testing
(NHST) (again)
Our typical way of answering questions such as these is to set up a Null Hypothesis as an
alternative.

Typically, this hypothesis is that of zero effect.

We then pose the question:

If there were no difference or relationship between these two variables in the population,
how likely is it that we would observe this data in our sample?
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The process of NHST
a <- rnorm(50)
b <- rnorm(50, mean = 1)
t.test(a, b)

## 
##     Welch Two Sample t-test
## 
## data:  a and b
## t = -3.3612, df = 88.488, p-value = 0.001147
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.0098593 -0.2594473
## sample estimates:
## mean of x mean of y 
## 0.2640645 0.8987177
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Interpreting p-valuesInterpreting p-values
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Significance versus non-signifiance
In our field, we typically set our significance criterion - alpha, or  - at .05.

If the p-value of our test falls below this threshold, we say we have a significant result, and
we get all excited and break out the bubbly. 🍾, 🍾, 🍾

If the p-value falls above this threshold, we say we have a non-significant result, and we
get extremely upset. 😞 😭 😞

(both these reactions are a little bit over-the-top)

α
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Type I and Type II errors
Under NHST, we are trying to decide whether our statistical results match reality. There
are two basic types of error we can make.

Null hypothesis is false Null hypothesis is true

p <= .05 True positive False positive

p > .05 False negative True negative

False positives - a significant result when there is no real effect - are called Type I errors.

False negatives - a non-significant result when there is a real effect - are called Type II
errors.
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The false-positive rate
When the null hypothesis is true, any specific p-value is as likely as any other.

So if the null hypothesis is true, and there is no real effect, we will get a significant result
5% of the time - 1 in every 20 repeats.

In other words, setting  at .05 means we accept a false positive rate of 5%.α
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Here, I simulated normally distributed data
from 100 participants with a mean of zero,
one thousand times.

Each time, I tested whether that data was
significantly different from zero.

Approx 5% of the p-values of these 1000
tests were < .05.

The false-positive rate
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Here, I simulated data from 100
participants with a mean of 0.15, 1000
times, each time testing whether the data
differs from zero.

Approx 320 tests out of 1000 were
significant - a true-positive rate of .32, and
a false-negative rate of .68 - 68%.

The false-negative rate
When the null hypothesis is false, p-values lower than our threshold become more likely.
But it's still not certain we'll get a significant effect.
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1) Even if there was an effect, it may not
be for the reason we think.

2) A significant finding may also be a false
positive.

What does the p-value tell us?
Does a significant p-value tell us how likely it is our experimental hypothesis - that there is
really an effect - is true?
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1) A non-significant effect only tells us
that we failed to reject the null
hypothesis.

2) A non-significant effect can be a false
negative.

What does the p-value tell us?
Does a non-significant p-value tell us that there is no effect, or that our hypothesis was
false?
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P-values tell us absolutely nothing about
the size of the effect.

All they tell us that the data is unlikely if
the null hypothesis is true, not whether
the effect is large or small. Tiny effects can
have p-values just as tiny as large effects
can.

Ok, does the p-value tell us how big
the effect is?
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A tiny p-value does not mean the effect is
any way important.

Essentially meaningless effects can have
very small p-values.

Right. So does it tell us how important
the effect is?
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So what So what doesdoes the p-value tell us? the p-value tell us?
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Effect sizesEffect sizes
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Effect sizes
p-values tell us how likely it was that the data we observed would happen if the null
hypothesis were true. But to understand what our tests are really telling us, we need to
look at effect sizes.

Effect sizes:

1) Communicate the practical significance of a result.

2) Enable comparison across different studies and different scales.

3) Allow you to perform power analysis.
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Easy to understand and interpret, so
they're particularly helpful for
understanding the real-world relevance of
statistical effects.

e.g. Usain Bolt ran .12 seconds faster than
Yohan Blake.

Unstandardized effect sizes
Unstandardized effect sizes are effects on the measurement scale.
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Standardized effect sizes
Standardized effect sizes place effects on a common scale - they're helpful when the
dependent measure is measured in different units across different studies.

1 2 3 4 5

Definitely
agree

Somewhat
agree

Neither agree nor
disagree

Somewhat
disagree

Definitely
disagree

1 2 3 4 5 6 7

Definitely
agree

Somewhat
agree

Slightly
agree

Neither agree
nor disagree

Slightly
disagree

Somewhat
disagree

Definitely
disagree
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Standardized effect sizes
There are two major families of standardized effect size:

Measure Cohen's d r

Definition Size of mean differences Strength of association

Statistical tests t-tests correlation, ANOVA, regression

Variations , , Hedge's , , , d dz g r r2 η2 ω2
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Standardized mean differencesStandardized mean differences
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Cohen's d
Cohen's d ranges from 0 to  (infinity!)

The basic calculation is pretty simple - it's the mean difference divided by the standard
deviation pooled across conditions.

All variations of Cohen's d for different types of design (e.g.  for within-subjects designs)
are variants of this formula.

∞

μ1 − μ2

SDpooled

dz
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Interpreting Cohen's d
The website linked here provides a great interactive tool to visualize what Cohen's d is
RPsychologist Cohen's d
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Pooled standard deviation
The pooled standard deviation is calculated using this formula:

sqrt((sd(a)^2 + sd(b)^2) / 2)

## [1] 0.9440868

SDpooled =√ SD2

1
+ SD2

2

2
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Quick example
t.test(a, b)

## 
##     Welch Two Sample t-test
## 
## data:  a and b
## t = -3.3612, df = 88.488, p-value = 0.001147
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.0098593 -0.2594473
## sample estimates:
## mean of x mean of y 
## 0.2640645 0.8987177

(mean(a) - mean(b)) / sqrt((sd(a)^2 + sd(b)^2) / 2)

## [1] -0.6722403
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The effectsize package
A simpler way to calculate Cohen's d is to use the cohens_d function from the
effectsize package.

library(effectsize)
cohens_d(a, b)

## Cohen's d |         95% CI
## --------------------------
## -0.67     | [-1.07, -0.27]
## 
## - Estimated using pooled SD.

This also gives us confidence intervals around the effect size - a helpful reminder that these
are estimates.
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The Facebook study
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The Facebook study
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The Facebook study

P = .007, d = .001. This is an absolutely tiny effect size.

Approx 1 extra negative word for every 3570 words typed.

effectsize::interpret_d(.001)

## [1] "very small"
## (Rules: cohen1988) 34 / 58



Strength of associationsStrength of associations
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r = .2

interpret_r(.2)

## [1] "medium"
## (Rules: funder2019)

Guess the correlation
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r = .8

interpret_r(.8)

## [1] "very large"
## (Rules: funder2019)

Guess the correlation
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Guess the correlation
RPsychologist correlation visualizations https://rpsychologist.com/d3/correlation/

guessthecorrelation.com
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Converting from r to d
Although the scale is different, r and d are closely related.

The formula below can be used to convert between them.

r_to_d(.8) # from the effectsize package again!

## [1] 2.666667

interpret_d(r_to_d(.8))

## [1] "large"
## (Rules: cohen1988)

r =
d

√d
2
s +

N 2−2N

n1n2
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Proportion of variance explained
For regressions, and ANOVAs, we don't use the correlation coefficient on its own. Rather,
we use one of the various proportion of variance explained effect sizes.

Symbol name

r-squared

eta-squared

partial eta-squared

generalized eta-squared

r
2

η
2

η
2
p

η
2
g
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Proportion of variance explained
Every one of these measures is a variation on the same thing: how much does the
relationship between our variables reduce the error of our model.

Remember the formula for R-squared ( )?

It's the ratio of the variance explained by the model to the total variance in the model.
Thus, it's the percentage of variance explained by the model.

r
2

r2 =
SSm

SSt
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Reporting effect sizes in your resultsReporting effect sizes in your results
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Reporting effect sizes in your results
When reporting your statistical results, it's best practice (though not always followed...) to
report both standardized and unstandardized effect sizes.

1) Reporting unstandardized effect sizes helps understand how big the effect is in real
terms.

2) Reporting standardized effect sizes helps compare the effect to effects in different
studies and on different scales.

3) Always interpret the effect sizes. Take care of the difference between statistical and
practical significance.

4) Many of the standardized effect sizes are somewhat interchangeable, but always try to
report the right one for your test (e.g. Cohen's d for t-tests,  /  for
regression)

r2 adjusted − r2
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Which standardized effect should you
report?

Statistical test Standardized effect size

t-test  (between),  (within), 

ANOVA  (one-way),  (factorial),  (Any)

Correlation

Linear (simple or multiple) regression , 

Note - not every possible test and every possible effect size can fit! We'll cover some more
later in the course...

d dz ds

η2 η2
p η2

g

r

r2 adjusted − r2
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Rules of thumb for interpreting
standardized effect sizes

Effect size small medium large

d 0.2 0.5 0.8

r .1 .3 .5

.1 .19 .25

.01 .06 .14

.01 .09 .25

.02 .13 .26

These are guidelines, not rules. (you can also try the interpret functions from
effectsize)

r
2

η
2

η
2
p

η
2
g
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Designing for statistical powerDesigning for statistical power
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Statistical power
Statistical power is the inverse of the false-negative rate.

Also termed beta, or , power is the probability of getting a significant result with a given
sample size, statistical test, and effect size.

By convention, psychological studies aim for 80% power - we accept a 20% false-negative
rate!

β
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Here I simulate the effects of increasing
sample size on statistical power.

The effect size stays constant - there's a
0.1 difference between the means of each
group.

Statistical power and sample size
Sample size is an important factor determining statistical power:
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Estimating sample size
We can estimate the required sample size of a specific statistical test if we know the desired
power and the expected effect size. The hardest part of this is typically knowing what
effect size you expect.

library(pwr)
pwr.t.test(power = .8, # this is a proportion
           d = .3, # Cohen's d
           type = "one.sample") # we are doing a one-sample t.test

## 
##      One-sample t test power calculation 
## 
##               n = 89.14938
##               d = 0.3
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
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Why don't we aim for 100% power?
pwr.t.test(power = 1, # this is a proportion
           d = .3, # Cohen's d
           type = "one.sample") # we are doing a one-sample t.test

## 
##      One-sample t test power calculation 
## 
##               n = 1000000000
##               d = 0.3
##       sig.level = 0.05
##           power = 1
##     alternative = two.sided

100% power is often just a little impractical.

50 / 58



Estimating effect size
We can estimate the effect size we'd have power to detect if we know the power and the
sample size. Suppose we know we'd have 100 participants - we can't get more, and we
won't get fewer.

pwr.t.test(power = .8, # this is a proportion
           n = 100, # Cohen's d
           type = "one.sample") # we are doing a one-sample t.test

## 
##      One-sample t test power calculation 
## 
##               n = 100
##               d = 0.2829005
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
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Here, I simulate data with a mean of
0.283, 1000 times, and test whether it
differs from zero.

The sample size remains constant at 100
participants.

Approx 800 tests are significant - a true-
positive rate of .80, and thus a statistical
power -  - of 80%.

Statistical power and effect size

β
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In this simulation, the general design of
the study stays the same - there are 100
participants, we test against zero with a t-
test.

As the effect size increases, the power of
the study increases.

Statistical power and effect size
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The study has approximately 18.6% power
to detect a 0.1 difference in means.

But the study also has approximately 84%
power to detect a 0.3 difference in means.

Studies have a power curve, not a single
power.

Statistical power and effect sizes
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Estimating power
We can estimate the power of a specific statistical test if we know the sample size and the
effect size.

pwr.t.test(n = 100, # this is a proportion
           d = .3, # Cohen's d
           type = "one.sample") # we are doing a one-sample t.test

## 
##      One-sample t test power calculation 
## 
##               n = 100
##               d = 0.3
##       sig.level = 0.05
##           power = 0.8439471
##     alternative = two.sided

... but this is not generally what you want to do. After you've done the study, it's too late.
Before you run the study, you want to estimate sample size to know how many people you 55 / 58



Critiquing the statistical power of a
study
A common critique of studies is that their sample size is too low, and thus that they lack
statistical power.

But any given study always has 80% power to detect something: power is a curve.

A better critique is that a study has insufficient sample size to reliably detect a
meaningful, important effect.
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Further (suggested, not required)
reading
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a
practical primer for t-tests and ANOVAs. Frontiers in Psychology.
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00863/full

Perugini, M., Gallucci, M., & Costantini, G. (2018). A Practical Primer To Power Analysis for
Simple Experimental Designs. International Review of Social Psychology, 31(1), 20. DOI:
http://doi.org/10.5334/irsp.181
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Next session
We'll be skipping two weeks for Easter!.

The following week, we'll be returning to Multiple regression and looking at logistic
regression and Generalized linear models..

Chapter 8 of Field et al, Discovering Statistics Using R.
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