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## `geom_smooth()` using formula 'y ~ x' Our job is to figure out the mathematical
relationship between our predictor(s) and
our outcome.

Linear regression

Y = b0 + b1Xi + εi
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Linear regression
Y = b0 + b1Xi + εi
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Linear regression

Y - The outcome - the dependent variable.

 - The intercept. This is the value of  when  = 0.

 - The regression coefficients. This describes the steepness of the relationship between
the outcome and slope(s).

 - The predictors - our independent variables.

 - The random error - variability in our dependent variable that is not explained by our
predictors.

Y = b0 + b1Xi + εi

b0 Y X

b1

Xi

εi
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Regression assumptions
Linear regression has a number of assumptions:

Normally distributed errors

Homoscedasticity (of errors)

Independence of errors

Linearity

No perfect multicollinearity
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The errors, , are the variance left over
after your model is fit.

An example like that on the left is what
you want to see!

There is no clear pattern; the dots are
evenly distributed around zero.

Normally distributed errors

εi
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In contrast, the residuals on the left are
skewed.

This most often happens with data that
are bounded. For example, reaction times
cannot be below zero; negative values are
impossible.

Skewed errors
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The performance package has a very
handy function called check_model(),
which shows a variety of ways of checking
the assumptions all at once.

library(performance)
check_model(test_skew)

Checking assumptions
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You can follow up suspicious looking plots
with individual functions like
check_normality(), which uses
shapiro.test() to check the residuals
and also provides nice plots.

Rely on the plots more than significance
tests...

plot(check_normality(test_skew),
     type = "qq")

## Warning: Non-normality of residuals detected (p < .001).

Checking assumptions
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So, about violated assumptions? 😱
1) We can think about transformations 😱

2) We could consider non-parametric stats - things like wilcox.test(),
friedman.test(), kruskal.test(), all of which are based on rank transformations and
thus are really more like point 1 😱

3) We should think about why the assumptions might be violated. Is this just part of how
the data is generated? 🤔
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The normal distribution can also be called
the Gaussian distribution.

The linear regression models we've used
so far assume a Gaussian distribution of
errors.

Distributional families
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Generalized linear models
A Generalized Linear Model - fit with glm() - allows you to specify what type of family of
probability distributions the data are drawn from.

skewed_var <- rgamma(300, 1)
hist(skewed_var)

15 / 47

The data With lm With glm

file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset=the-data#panelset_the-data
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset=with-lm#panelset_with-lm
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset=with-glm#panelset_with-glm


Generalized linear models
A Generalized Linear Model - fit with glm() - allows you to specify what type of family of
probability distributions the data are drawn from.

lm(skewed_var ~ X1 + X2)

## 
## Call:
## lm(formula = skewed_var ~ X1 + X2)
## 
## Coefficients:
## (Intercept)           X1           X2  
##     0.99775     -0.04337      0.04234
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Generalized linear models
A Generalized Linear Model - fit with glm() - allows you to specify what type of family of
probability distributions the data are drawn from.

glm(skewed_var ~ X1 + X2, family = "gaussian")

## 
## Call:  glm(formula = skewed_var ~ X1 + X2, family = "gaussian")
## 
## Coefficients:
## (Intercept)           X1           X2  
##     0.99775     -0.04337      0.04234  
## 
## Degrees of Freedom: 299 Total (i.e. Null);  297 Residual
## Null Deviance:        268.9 
## Residual Deviance: 267.8     AIC: 825.3
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Categorical outcome variables
Suppose you have a discrete, categorical outcome.

Examples of categorical outcomes:

correct or incorrect answer
person commits an offence or does not

Examples of counts:

Number of items successfully recalled
Number of offences committed
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The binomial distribution
A coin only has two sides: heads or tails.

Assuming the coin is fair, the probability -  - that it lands on heads is .5. So the probability
it lands on tails -  is also .5.

This type of variable is called a Bernoulli random variable.

If you toss the coin many times, the count of how many heads and how many tails occur is
called a binomial distribution.

P

1 − P
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Binomial distribution
If we throw the coin 100 times, how many times do we get tails?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
qplot(coin_flips)
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Binomial distribution
What happens if we try to model individual coin flips with lm()?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
x3 <- rnorm(100) # this is just a random variable for the purposes of demonstration!
check_model(lm(coin_flips ~ x3))
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Logistic regression
We get glm() to model a binomial distribution by specifying the binomial family.

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
glm(coin_flips ~ 1,
    family = binomial(link = "logit"))

## 
## Call:  glm(formula = coin_flips ~ 1, family = binomial(link = "logit"))
## 
## Coefficients:
## (Intercept)  
##    -0.04001  
## 
## Degrees of Freedom: 99 Total (i.e. Null);  99 Residual
## Null Deviance:        138.6 
## Residual Deviance: 138.6     AIC: 140.6
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The logit transformation is used to link our
predictors to our discrete outcome
variable.

It helps us constrain the influence of our
predictors to the range 0-1, and account
for the change in variance with
probability.

Logistic regression
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As probabilities approach zero or one, the
range of possible values decreases.

Thus, the influence of predictors on the
response scale must also decrease as we
reach one or zero.

Logistic regression
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Logistic regression

 - The probability of the outcome happening.

P(Y ) =
1

1 + e−(b0 + b1X1 + εi)

P(Y )
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Logistic regression

 - The probability of the outcome happening.

 - The log-odds (logits) of the predictors.

P(Y ) =
1

1 + e−(b0 + b1X1 + εi)

P(Y )

1
1+e−(...)
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Odds ratios and log odds
Odds are the ratio of one outcome versus the others. e.g. The odds of a randomly chosen
day being a Friday are 1 to 6 (or 1/6 = .17)

Log odds are the natural log of the odds:

The coefficients we get out are log-odds - they can be hard to interpret on their own.

coef(glm(coin_flips ~ 1, family = binomial(link = "logit")))

## (Intercept) 
## -0.04000533

log( )
p

1 − p
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Odds ratios and log odds
If we exponeniate them, we get the odds ratios back.

exp(coef(glm(coin_flips ~ 1, family = binomial(link = "logit"))))

## (Intercept) 
##   0.9607843

So this one is roughly 1:1 heads and tails! But there's a nicer way to figure it out...
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Taking penalties
What's the probability that a particular penalty will be scored?

##   PSWQ Anxious Previous         Scored
## 1   18      21       56 Scored Penalty
## 2   17      32       35 Scored Penalty
## 3   16      34       35 Scored Penalty
## 4   14      40       15 Scored Penalty
## 5    5      24       47 Scored Penalty
## 6    1      15       67 Scored Penalty

PSWQ = Penn State Worry Questionnaire
Anxiety = State Anxiety
Previous = Number of penalties scored previously
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Taking penalties
pens <- glm(Scored ~ PSWQ + Anxious + Previous,
            family = binomial(link = "logit"),
            data = penalties)
pens

## 
## Call:  glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"), 
##     data = penalties)
## 
## Coefficients:
## (Intercept)         PSWQ      Anxious     Previous  
##    -11.4926      -0.2514       0.2758       0.2026  
## 
## Degrees of Freedom: 74 Total (i.e. Null);  71 Residual
## Null Deviance:        103.6 
## Residual Deviance: 47.42     AIC: 55.42
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## PSWQ         -0.25137    0.08401  -2.992  0.00277 **

## 
## Call:
## glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"), 
##     data = penalties)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.31374  -0.35996   0.08334   0.53860   1.61380  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -11.49256   11.80175  -0.974  0.33016   

## Anxious       0.27585    0.25259   1.092  0.27480   
## Previous      0.20261    0.12932   1.567  0.11719   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 103.638  on 74  degrees of freedom
## Residual deviance:  47.416  on 71  degrees of freedom
## AIC: 55.416
## 
## Number of Fisher Scoring iterations: 6
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The response scale and the link scale
The model is fit on the link scale.

The coefficients returned by the GLM are in logits, or log-odds.

coef(pens)

## (Intercept)        PSWQ     Anxious    Previous 
## -11.4925608  -0.2513693   0.2758489   0.2026082

How do we interpret them?
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Converting logits to odds ratios
coef(pens)[2:4]

##       PSWQ    Anxious   Previous 
## -0.2513693  0.2758489  0.2026082

We can exponentiate the log-odds using the exp() function.

exp(coef(pens)[2:4])

##      PSWQ   Anxious  Previous 
## 0.7777351 1.3176488 1.2245925
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Odds ratios
An odds ratio greater than 1 means that the odds of an outcome increase.

An odds ratio less than 1 means that the odds of an outcome decrease.

exp(coef(pens)[2:4])

##      PSWQ   Anxious  Previous 
## 0.7777351 1.3176488 1.2245925

From this table, it looks like the odds of scoring a penalty decrease with increases in PSWQ
but increase with increases in State Anxiety or Previous scoring rates.
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The response scale
The response scale is even more intuitive. It makes predictions using the original units. For
a binomial distribution, that's probabilities. We can generate probabilities using the
predict() function.

penalties$prob <- predict(pens, type = "response")
head(penalties)

##   PSWQ Anxious Previous         Scored      prob
## 1   18      21       56 Scored Penalty 0.7542999
## 2   17      32       35 Scored Penalty 0.5380797
## 3   16      34       35 Scored Penalty 0.7222563
## 4   14      40       15 Scored Penalty 0.2811731
## 5    5      24       47 Scored Penalty 0.9675024
## 6    1      15       67 Scored Penalty 0.9974486
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Model predictions
Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

new_dat <- 
  tibble::tibble(PSWQ = seq(0, 30, by = 2),
                 Anxious = mean(penalties$Anxious),
                 Previous = mean(penalties$Previous))
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Model predictions
Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

new_dat$probs <-
  predict(pens,
          newdata = new_dat,
          type = "response")
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Model predictions
Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

ggplot(new_dat, aes(x = PSWQ, y = probs)) +
  geom_point() +
  geom_line()

35 / 47

Create new data Make predictions Plot predictions

file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=create-new-data#panelset1_create-new-data
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=make-predictions#panelset1_make-predictions
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=plot-predictions#panelset1_plot-predictions


Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

new_dat <- tibble::tibble(PSWQ = 7,
                          Anxious = 22,
                          Previous = 34)
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

predict(pens, new_dat)

##          1 
## -0.2947909
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

exp(predict(pens, new_dat))

##         1 
## 0.7446873
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

predict(pens, new_dat, type = "response")

##         1 
## 0.4268314
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The sjPlot package has some excellent
built in plotting tools - try the
plot_model() function.

library(sjPlot)
plot_model(pens,
           type = "pred",
           terms = "PSWQ")

## Data were 'prettified'. Consider using `terms="PSWQ [all]"` to get smooth plots.

Plotting
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Results tables
sjPlot::tab_model(pens)

 Scored

Predictors Odds Ratios CI p

(Intercept) 0.00 0.00 – 64258.63 0.330

PSWQ 0.78 0.64 – 0.90 0.003

Anxious 1.32 0.81 – 2.24 0.275

Previous 1.22 0.96 – 1.61 0.117

Observations 75

R2 Tjur 0.594

38 / 47



The Titanic datasetThe Titanic dataset

39 / 4739 / 47



The Titanic datasetThe Titanic dataset
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The Titanic dataset
head(full_titanic)

## # A tibble: 6 x 12
##   PassengerId Survived Pclass Name    Sex     Age SibSp Parch Ticket  Fare Cabin
##         <dbl>    <dbl>  <dbl> <chr>   <chr> <dbl> <dbl> <dbl> <chr>  <dbl> <chr>
## 1           1        0      3 Braund~ male     22     1     0 A/5 2~  7.25 <NA> 
## 2           2        1      1 Cuming~ fema~    38     1     0 PC 17~ 71.3  C85  
## 3           3        1      3 Heikki~ fema~    26     0     0 STON/~  7.92 <NA> 
## 4           4        1      1 Futrel~ fema~    35     1     0 113803 53.1  C123 
## 5           5        0      3 Allen,~ male     35     0     0 373450  8.05 <NA> 
## 6           6        0      3 Moran,~ male     NA     0     0 330877  8.46 <NA> 
## # ... with 1 more variable: Embarked <chr>

Downloaded from Kaggle
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The Titanic dataset
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full_titanic %>% 
  group_by(Survived,
           Sex) %>%
  count()

## # A tibble: 4 x 3
## # Groups:   Survived, Sex [4]
##   Survived Sex        n
##      <dbl> <chr>  <int>
## 1        0 female    81
## 2        0 male     468
## 3        1 female   233
## 4        1 male     109

full_titanic %>%
  group_by(Sex) %>%
  summarise(p = mean(Survived),
            Y = sum(Survived),
            N = n())

## # A tibble: 2 x 4
##   Sex        p     Y     N
##   <chr>  <dbl> <dbl> <int>
## 1 female 0.742   233   314
## 2 male   0.189   109   577

The Titanic dataset
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The Titanic dataset
## 
## Call:
## glm(formula = Survived ~ Age + Pclass, family = binomial(), data = full_titanic)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1524  -0.8466  -0.6083   1.0031   2.3929  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.296012   0.317629   7.229 4.88e-13 ***
## Age         -0.041755   0.006736  -6.198 5.70e-10 ***
## Pclass2     -1.137533   0.237578  -4.788 1.68e-06 ***
## Pclass3     -2.469561   0.240182 -10.282  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 964.52  on 713  degrees of freedom
## Residual deviance: 827.16  on 710  degrees of freedom
##   (177 observations deleted due to missingness) 44 / 47



The Titanic dataset
library(emmeans)
emmeans(age_class,
        ~Age|Pclass,
        type = "response")

## Pclass = 1:
##   Age  prob     SE  df asymp.LCL asymp.UCL
##  29.7 0.742 0.0339 Inf     0.670     0.803
## 
## Pclass = 2:
##   Age  prob     SE  df asymp.LCL asymp.UCL
##  29.7 0.480 0.0394 Inf     0.403     0.557
## 
## Pclass = 3:
##   Age  prob     SE  df asymp.LCL asymp.UCL
##  29.7 0.196 0.0216 Inf     0.157     0.241
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale
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Some final notes on Generalized Linear
Models
Today has focussed on logistic regression with binomial distributions.

But Generalized Linear Models can be expanded to deal with many different types of
outcome variable!

e.g. Counts follow a Poisson distribution - use family = "poisson"

Ordinal variables (e.g. Likert scale) can be modelled using cumulative logit models (using
the ordinal or brms packages).
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Suggested reading for categorical ordinal
regression
Liddell & Kruschke (2018). Analyzing ordinal data with metric models: What could possibly
go Wrong?

Buerkner & Vuorre (2018). Ordinal Regression Models in Psychology: A Tutorial

47 / 47

https://www.sciencedirect.com/science/article/pii/S0022103117307746
https://psyarxiv.com/x8swp/

