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Linear regression - a (brief) recap
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Linear regression

## geom_smooth()" using formula *y ~ x* Our job is to figure out the mathematical
relationship between our predictor(s) and
our outcome.

Y =by+b01X;+e
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Linear regression

Y =0by+b0:X;+ ¢
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Linear regression

Y =bo+01.X; + ¢
Y - The outcome - the dependent variable.

bo - The intercept. This is the value of Y when X = 0.

X; - The predictors - our independent variables.

e; - The random error - variability in our dependent variable that is not explained by our
predictors.
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Regression assumptions
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Regression assumptions

Linear regression has a number of assumptions:
e Normally distributed errors
e Homoscedasticity (of errors)
e Independence of errors
e Linearity

e No perfect multicollinearity
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Normally distributed errors

Standardized residuals

0.4

0.0 0.2 0.4 0.¢
Fitted values

The errors, ¢;, are the variance left over
after your model is fit.

An example like that on the left is what
you want to see!

There is no clear pattern; the dots are
evenly distributed around zero.
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Skewed errors

Standardized residuals
(]
o

5.0

2.57

1.0 1.1 1.2
Fitted values

In contrast, the residuals on the left are
skewed.

This most often happens with data that
are bounded. For example, reaction times
cannot be below zero; negative values are
impossible.
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Checking assumptions
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Checking assumptions

You can follow up suspicious looking plots
with individual functions like
check_normality (), which uses
shapiro.test () to check the residuals
and also provides nice plots.

Rely on the plots more than significance
tests...

plot(check_normality(test_skew),
type = "qq")

Sample Quantiles

0.0

Non-normality of Residuals
Dots should be plotted along the line

-2 0
Theoretical Quantiles

## Warning: Non-normality of residuals detected (p < .001).
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So, about violated assumptions? (&)

1) We can think about transformations @

2) We could consider non-parametric stats - things like wilcox.test(),
friedman.test(), kruskal. test(), all of which are based on rank transformations and

thus are really more like point 1 @

3) We should think about why the assumptions might be violated. Is this just part of how
the data is generated?
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Generalized Linear Models
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Distributional families

: Mean = 100
: Standard deviation = 15

0.024

The normal distribution can also be called
the Gaussian distribution.

density

0.014

The linear regression models we've used

so far assume a Gaussian distribution of
errors.

0.00 1

50

1
100 150 200
iq
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Generalized linear models

A Generalized Linear Model - fit with glm() - allows you to specify what type of family of
probability distributions the data are drawn from.

The data

skewed_var <- rgamma (300, 1)
hist(skewed_var)
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Generalized linear models

A Generalized Linear Model - fit with glm() - allows you to specify what type of family of
probability distributions the data are drawn from.

With Im

Im(skewed_var ~ X1 + X2)

##

## Call:

## Im(formula = skewed_var ~ X1 + X2)

H#

## Coefficients:

## (Intercept) X1 X2
H# 0.99775 -0.04337 0.04234
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Generalized linear models

A Generalized Linear Model - fit with glm() - allows you to specify what type of family of

probability distributions the data are drawn from.

glm(skewed_var ~ X1 + X2, family = "gaussian'")

##
##
##
##
##
##
##
##
##
##

Call: glm(formula

Coefficients:
(Intercept)

0.99775 -0.

Degrees of Freedom: 299 Total (i.e. Null);

Null Deviance:
Residual Deviance:

With glm

= skewed_var ~ X1 + X2, family = "gaussian")
X1 X2
04337 0.04234

268.9
267.8

AIC: 825.3

297 Residual
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Categorical outcome variables

Suppose you have a discrete, categorical outcome.
Examples of categorical outcomes:

e correct or incorrect answer
e person commits an offence or does not

Examples of counts:

e Number of items successfully recalled
e Number of offences committed
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The binomial distribution

A coin only has two sides: heads or tails.

Assuming the coin is fair, the probability - P - that it lands on heads is .5. So the probability
it lands on tails -1 — P is also .5.

This type of variable is called a Bernoulli random variable.

If you toss the coin many times, the count of how many heads and how many tails occur is
called a binomial distribution.
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Binomial distribution

If we throw the coin 100 times, how many times do we get tails?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
gplot(coin_flips)

501
404
301
204

104

0.00

0.25

0.50
coin_flips

0.75

1.00
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Binomial distribution

What happens if we try to model individual coin flips with Tm()?

coin_flips <- rbinom(n

100, size = 1, prob = 0.5)
x3 <= rnorm(100) # this is just a random variable for the purposes of demonstration!

check_model(lm(coin_flips ~ x3))

Residuals Sample Quantiles

Count

Soo
wow

Non-normality of Residuals
Dots should be plotted along the line

how
.
.
.
.

-2 -1 0 1 2
Theoretical Quantiles

Homoscedasticity (Linear Relationship)

Dots should spread equally around horizontal lir

0.50 0.51 0.52 0.53 0.54
Fitted values

Check for Influential Observations
15
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0.00 0.25 0.50 0.75 1.00
Cook's Distance
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Std. Residuals (sqgrt)
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1.

1.02
1.00
0.98

Non-Normality of Residuals
Distribution should look like a normal curve

A /

-0.3 0.0 0.3
Residuals

Homogeneity of Variance (Scale-Locatic
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0.50 0.51 0.52 0.53 0.54
Fitted values
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Logistic regression

We get glm() to model a binomial distribution by specifying the binomial family.

coin_flips <- rbinom(n = 100, size
glm(coin_flips ~ 1,
family = binomial(link = "logit"))

##
##
##
##
##
##
##
##
##
##

Call: glm(formula

Coefficients:
(Intercept)
-0.04001

Degrees of Freedom: 99 Total (i.e. Null);

Null Deviance:
Residual Deviance:

= coin_flips ~ 1, family

138.6
138.6

AIC:

1, prob = 0.5)

140.6

= binomial(link = "logit"))

99 Residual
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Logistic regression

The logit transformation is used to /ink our
predictors to our discrete outcome
variable.

It helps us constrain the influence of our
predictors to the range 0-1, and account
for the change in variance with
probability.

Probability

1.00;

o
-
g

o
Ul
Q

=
N
g

0.001

-5.0

25

0.0

2.5

5.0
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Logistic regression

As probabilities approach zero or one, the
range of possible values decreases.

Thus, the influence of predictors on the
response scale must also decrease as we
reach one or zero.

Probability
O o
8 g

o
N
g

0.001

5.0

25

0.0

25

5.0
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Logistic regression

1
14 e (bo + b1 X1+ &)

P(Y)

P(Y) - The probability of the outcome happening.
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Logistic regression

1

P(Y) =
) 1+ e (bo + b1 X1 + &)

P(Y) - The probability of the outcome happening.

He;_() - The log-odds (logits) of the predictors.
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Odds ratios and log odds

Odds are the ratio of one outcome versus the others. e.g. The odds of a randomly chosen
day being a Friday are 1 to 6 (or 1/6 =.17)

Log odds are the natural log of the odds:
p
)

l I
09(1—p

The coefficients we get out are /log-odds - they can be hard to interpret on their own.
coef(glm(coin_flips ~ 1, family = binomial(link = "logit")))

## (Intercept)
## -0.04000533
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Odds ratios and log odds

If we exponeniate them, we get the odds ratios back.
exp(coef(glm(coin_flips ~ 1, family = binomial(link = "logit"))))

## (Intercept)
## 0.9607843

So this one is roughly 1:1 heads and tails! But there's a nicer way to figure it out...
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Taking penalties
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Taking penalties

What's the probability that a particular penalty will be scored?

##
##
##
##
##
##
##

e PSWQ = Penn State Worry Questionnaire

o U1l b WIN B

PSWQ Anxious Previous

18
17
16
14
5
1

21
32
34
40
24
15

56
35
35
15
47
67

Scored
Scored
Scored
Scored
Scored
Scored

e Anxiety = State Anxiety

e Previous = Number of penalties scored previously

Scored
Penalty
Penalty
Penalty
Penalty
Penalty
Penalty
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Taking penalties

pens <- glm(Scored ~ PSWQ + Anxious + Previous,
family = binomial(link = "logit"),

pens

H#

## Call: glm(formula = Scored ~ PSWQ + Anxious + Previous, family
#4 data = penalties)

##

## Coefficients:

## (Intercept) PSWQ Anxious

## -11.4926 -0.2514 0.2758

##

## Degrees of Freedom: 74 Total (i.e. Null);
## Null Deviance: 103.6

## Residual Deviance: 47.42 AIC: 55.42

data = penalties)

Previous
0.2026

71 Residual

binomial(link = "logit"),
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##

## Call:

## glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"),
## data = penalties)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.31374 -0.35996 0.08334 0.53860 1.61380

##

## Coefficients:

#it Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -11.49256 11.80175 -0.974 0.33016

## Anxious 0.27585 0.25259 1.092 0.27480

## Previous 0.20261 ©.12932 1.567 0.11719

## —-—-

## Signif. codes: 0O '#x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)

##

#H Null deviance: 103.638 on 74 degrees of freedom

## Residual deviance: 47.416 on 71 degrees of freedom
## AIC: 55.416

#H#

## Number of Fisher Scoring iterations: 6
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The response scale and the link scale

The model is fit on the link scale.
The coefficients returned by the GLM are in logits, or log-odds.
coef (pens)

## (Intercept) PSWQ Anxious Previous
## -11.4925608 -0.2513693 0.2758489 0.2026082

How do we interpret them?
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Converting logits to odds ratios

coef(pens) [2:4]

# PSWQ Anxious Previous
## -0.2513693 0.2758489 0.2026082

We can exponentiate the log-odds using the exp() function.
exp(coef(pens)[2:4])

## PSWQ Anxious Previous
## 0.7777351 1.3176488 1.2245925
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Odds ratios

An odds ratio greater than 1 means that the odds of an outcome increase.

An odds ratio less than 1 means that the odds of an outcome decrease.

exp(coef(pens)[2:4])

## PSWQ Anxious Previous
## 0.7777351 1.3176488 1.2245925

From this table, it looks like the odds of scoring a penalty decrease with increases in PSWQ
but increase with increases in State Anxiety or Previous scoring rates.
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The response scale

The response scale is even more intuitive. It makes predictions using the original units. For
a binomial distribution, that's probabilities. We can generate probabilities using the
predict() function.

penalties$prob <- predict(pens, type = "response")
head (penalties)

# PSWQ Anxious Previous Scored prob
## 1 18 21 56 Scored Penalty 0.7542999
#4 2 17 32 35 Scored Penalty 0.5380797
#4# 3 16 34 35 Scored Penalty 0.7222563
## 4 14 40 15 Scored Penalty 0.2811731
## 5 5 24 47 Scored Penalty 0.9675024
## 6 1 15 67 Scored Penalty 0.9974486
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Model predictions

Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

Create new data

new_dat <-
tibble::tibble(PSWQ = seq(0, 30, by = 2),
Anxious = mean(penalties$SAnxious),
Previous = mean(penalties$Previous))
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Model predictions

Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

Make predictions

new_dat$probs <-
predict(pens,
newdata = new_dat,
type = "response")
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Model predictions

Note that these model predictions don't need to use the original data. Let's see how the
probability of scoring changes as PSWQ increases.

Plot predictions

1.00 4

ggplot(new_dat, aes(x = PSWQ, vy
geom_point() +
geom_Tline()

probs)) +

0.754

probs
(=]
(%))
(=]

0.25 4

0.00 4
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Model predictions

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

Make the data

new_dat <- tibble::tibble(PSWQ = 7
Anxious 22,
Previous = 34)

I~
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Model predictions

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

Make the data Predict log-odds Predict odds Predict probabilities

predict(pens, new_dat)

## 1
## -0.2947909

36 [ 47


file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset2=make-the-data#panelset2_make-the-data
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset2=predict-log-odds#panelset2_predict-log-odds
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset2=predict-odds#panelset2_predict-odds
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset2=predict-probabilities#panelset2_predict-probabilities

Model predictions

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

Make the data Predict log-odds Predict odds Predict probabilities

exp(predict(pens, new_dat))

## 1
## 0.7446873
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Model predictions

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7,
an Anxious rating of 12, and a Previous scoring record of 34.

Predict probabilities

predict(pens, new_dat, type = "response'")

## 1
## 0.4268314
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Plotting

The sjPlot package has some excellent N
built in plotting tools - try the U
plot_model() function.

Predicted probabilities of Scored

75%

library(sjPlot) % 50%

plot_model(pens, ?
type = "pred", 5% ]
terms = "PSWQ")

## Data were 'prettified'

0%

. Consider using " terms="

10 20 20
PSWQ
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Results tables

sjPlot::tab_model(pens)

Predictors Odds Ratios

Scored

CI

p

(Intercept) 0.00
PSWQ 0.78
Anxious 1.32
Previous 1.22

0.00 - 64258.63 0.330

0.64 -0.90
0.81-2.24
0.96 - 1.61

0.003
0.275
0.117

Observations 75
RZ Tjur 0.594
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The Titanic dataset
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The Titanic dataset

head(full_titanic)

##
##
##
##
##
##
##
##
##
##

# A tibble: 6 x 12
PassengerId Survived Pclass Name Sex
<db'l> <dbl> <dbl> <chr> <chr>

= O 01 b W NP

1 0
2 1
3 1
4 1
5 0
6 0

. with 1 more variable:

Downloaded from Kaggle

Braund~ male
Cuming~ fema~
Heikki~ fema~
Futrel~ fema~
Allen,~ male
Moran,~ male
Embarked <chr>

w wkrFE wkRFEWw

Age SibSp Parch
<dbl> <dbl> <dbl>

22
38
26
35
35
NA

1

© OO =

(OO OMOMNOMNO]

Ticket
<chr>

A/5 2~
PC 17~
STON/~
113803
373450
330877

Fare
<dbl>

.25
71.
.92
53.
.05
.46

3

Cabin
<chr>
<NA>
C85
<NA>
C123
<NA>
<NA>
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The Titanic dataset

SPECIAL MOTES:
Pclass is a proxy for socio-economic status ({SES)
1st © Upper; 2nd ~ Middle; 3rd ~ Lower

VARIAELE DESCRIPTIONS:
survival Survival
(0 = No; 1 = Yes)
pclass Passenger Class
(1st; 2nd; 3rd)
name Name
sex Sex

Age is in Years; Fractional if Age less than One (1)
If the Age is Estimated, it is in the form xx.b

With respect to the family relation variables (i.e. sibsp and parch)
some relations were ignored. The following are the definitions used
for sibsp and parch.

age Age iy s . .

Sibling: Brother, Sister, Stepbrother, or Stepsister of Passenger
sibsp N Siblings/Spouses Aboard & Aboard Titanic P P ne
parch N Parents/Children Aboard . . .

. . Spouse: Husband or Wife of Passenger Aboard Titanic
ticket Ticket Number i .
fare Passenger Fare (Mistresses and Fiances Ignored)
g Parent: Mother or Father of Passenger Abocard Titanic

cabin Cabin .
embarked Port of Fmbarkation Child: Son, Daug?terz Stepson, or Stepdaughter of Passenger
Aboard Titanic

(C Cherbourg;
= Queenstown;

g Southampton) Other family relatives excluded from this study include cousins,

nephews/nieces, aunts/uncles, and in-laws. Some children travelled
only with a nanny, therefore parch=0 for them. As well, some
travelled with very close friends or neighbors in a wvillage, however,
the definitions do not support such relations.




The Titanic dataset

full_titanic %>% full_titanic %>%
group_by (Survived, group_by (Sex) %>%
Sex) %>% summarise(p = mean(Survived),
count() Y = sum(Survived),
N =n())
## # A tibble: 4 x 3
## # Groups: Survived, Sex [4] ## # A tibble: 2 x 4
## Survived Sex n ## Sex ) Y N
#4 <dbl> <chr> <int> # <chr> <dbl> <dbl> <int>
#4 1 0 female 81 ## 1 female 0.742 233 314
## 2 0 male 468 ## 2 male 0.189 109 577
## 3 1 female 233
## 4 1 male 109
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The Titanic dataset

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

glm(formula = Survived ~ Age + Pclass, family = binomial(), data = full_titanic)

Deviance Residuals:
Min 1Q Median
-2.1524 -0.8466 -0.6083

Coefficients:

Estimate Std.
(Intercept) 2.296012 0.

Age -0.041755 0]
Pclass2 -1.137533 0.
Pclass3 -2.469561 0]
Signif. codes: 0 '*xxx' 0.

(Dispersion parameter for

Null deviance: 964.52
Residual deviance: 827.16

30 Max
1.0031 2.3929

Error z value Pr(>|z|)
317629 7.229 4.88e-13 **x%

006736 -6.198 5.70e-10 **x

237578 -4.788 1.68e-06 *xxx%

.240182 -10.282 < 2e-16 **x%

001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
binomial family taken to be 1)

on 713 degrees of freedom
on 710 degrees of freedom

(177 observations deleted due to missingness) 441/47



The Titanic dataset

library(emmeans)

emmeans (age_class,
~Age|Pclass,
type = "response")

## Pclass = 1:

## Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.742 0.0339 Inf 0.670 0.803
##

## Pclass = 2:

#i Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.480 0.0394 Inf 0.403 0.557
##

## Pclass = 3:

# Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.196 0.0216 Inf 0.157 0.241
H#

## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
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Some final notes on Generalized Linear
Models

Today has focussed on logistic regression with binomial distributions.

But Generalized Linear Models can be expanded to deal with many different types of
outcome variable!

e.g. Counts follow a Poisson distribution - use family = "poisson"

Ordinal variables (e.qg. Likert scale) can be modelled using cumulative logit models (using
the ordinal or brms packages).
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Suggested reading for categorical ordinal
regression

Liddell & Kruschke (2018). Analyzing ordinal data with metric models: What could possibly
go Wrong?

Buerkner & Vuorre (2018). Ordinal Regression Models in Psychology: A Tutorial
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https://www.sciencedirect.com/science/article/pii/S0022103117307746
https://psyarxiv.com/x8swp/

