Multiple and logistic regression 2022/04/19

Linear regression - a (brief) recap

Linear regression

`geom_smooth()` using formula 'y ~ x'

Our job is to figure out the mathematical relationship between our *predictor(s)* and our *outcome*.

 $Y = b_0 + b_1 X_i + \varepsilon_i$

Linear regression

 $Y = b_0 + b_1 X_i + \varepsilon_i$

Linear regression

 $Y = b_0 + b_1 X_i + \varepsilon_i$

Y - The outcome - the dependent variable.

 b_0 - The *intercept*. This is the value of Y when X = 0.

 b_1 - The regression coefficients. This describes the steepness of the relationship between the outcome and *slope(s)*.

 X_i - The predictors - our independent variables.

 ε_i - The random error - variability in our dependent variable that is not explained by our predictors.

Regression assumptions

Regression assumptions

Linear regression has a number of assumptions:

- Normally distributed errors
- Homoscedasticity (of errors)
- Independence of errors
- Linearity
- No perfect multicollinearity

Normally distributed errors

The *errors*, ε_i , are the variance left over after your model is fit.

An example like that on the left is what you want to see!

There is no clear pattern; the dots are evenly distributed around zero.

Skewed errors

In contrast, the residuals on the left are skewed.

This most often happens with data that are *bounded*. For example, *reaction times* cannot be below zero; negative values are impossible.

Checking assumptions

The performance package has a very handy function called check_model(), which shows a variety of ways of checking the assumptions all at once.

library(performance)
check_model(test_skew)

Checking assumptions

You can follow up suspicious looking plots with individual functions like check_normality(), which uses shapiro.test() to check the residuals and also provides nice plots.

Rely on the plots more than significance tests...

```
plot(check_normality(test_skew),
      type = "qq")
```


So, about violated assumptions?

1) We can think about transformations 💽

3) We should think about **why** the assumptions might be violated. Is this just part of how the data is *generated*?

Warning: Maximum value of original data is not i ## Model may not capture the variation of the dat

Generalized Linear Models

Distributional families

The *normal* distribution can also be called the *Gaussian* distribution.

The linear regression models we've used so far assume a *Gaussian* distribution of errors.

Generalized linear models

A *Generalized Linear Model* - fit with glm() - allows you to specify what type of family of probability distributions the data are drawn from.

The data With Im With glm

```
skewed_var <- rgamma(300, 1)
hist(skewed_var)</pre>
```


Generalized linear models

A *Generalized Linear Model* - fit with glm() - allows you to specify what type of family of probability distributions the data are drawn from.

The data With Im With glm

lm(skewed_var ~ X1 + X2)

##
Call:
Call:
lm(formula = skewed_var ~ X1 + X2)
##
Coefficients:
(Intercept) X1 X2
1.01292 -0.13856 0.02078

Generalized linear models

A *Generalized Linear Model* - fit with glm() - allows you to specify what type of family of probability distributions the data are drawn from.

The data With Im With glm

glm(skewed_var ~ X1 + X2, family = "gaussian")

```
##
## Call: glm(formula = skewed_var ~ X1 + X2, family = "gaussian")
##
## Coefficients:
## (Intercept) X1 X2
## 1.01292 -0.13856 0.02078
##
##
Degrees of Freedom: 299 Total (i.e. Null); 297 Residual
## Null Deviance: 329.7
## Residual Deviance: 323.6 AIC: 882.1
```

Categorical outcome variables

Suppose you have a *discrete*, *categorical* outcome.

Examples of categorical outcomes:

- correct or incorrect answer
- person commits an offence or does not

Examples of counts:

- Number of items successfully recalled
- Number of offences committed

The binomial distribution

A coin only has two sides: heads or tails.

Assuming the coin is fair, the probability - P - that it lands on *heads* is .5. So the probability it lands on *tails* - 1 - P is also .5.

This type of variable is called a **Bernoulli random variable**.

If you toss the coin many times, the count of how many heads and how many tails occur is called a **binomial distribution**.

Binomial distribution

If we throw the coin 100 times, how many times do we get tails?

```
coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
qplot(coin_flips)</pre>
```


Binomial distribution

What happens if we try to model individual coin flips with lm()?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
x3 <- rnorm(100) # this is just a random variable for the purposes of demonstration!
check_model(lm(coin_flips ~ x3))</pre>

We get glm() to model a binomial distribution by specifying the *binomial* family.

```
coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)
glm(coin_flips ~ 1,
    family = binomial(link = "logit"))</pre>
```

```
##
## Call: glm(formula = coin_flips ~ 1, family = binomial(link = "logit"))
##
## Coefficients:
## (Intercept)
## -0.04001
##
##
## Degrees of Freedom: 99 Total (i.e. Null); 99 Residual
## Null Deviance: 138.6
## Residual Deviance: 138.6 AIC: 140.6
```

GLM with logit link 🤓 Posterior Predictive Check Model-predicted lines should resemble observed data line 1.0 Density Model-predicted data ____ Observed data 0.5 0.0-0.00 0.25 0.50 0.75 1.00 coin flips

GLM with Gaussian link 😭

The *logit* transformation is used to *link* our predictors to our discrete outcome variable.

It helps us constrain the influence of our predictors to the range 0-1, and account for the change in *variance* with probability.

As probabilities approach zero or one, the range of possible values *decreases*.

Thus, the influence of predictors on the *response scale* must also decrease as we reach one or zero.

$${f P}(Y)=rac{1}{1+e^-(b_0+b_1X_1+arepsilon_i)}$$

P(Y) - The *probability* of the outcome happening.

$$P(Y)=rac{1}{1+e^-(b_0+b_1X_1+arepsilon_i)}$$

P(Y) - The *probability* of the outcome happening.

 $\frac{1}{1+e^{-}(...)}$ - The *log-odds* (logits) of the predictors.

Odds ratios and log odds

Odds are the ratio of one outcome versus the others. e.g. The odds of a randomly chosen day being a Friday are 1 to 6 (or 1/6 = .17)

Log odds are the *natural log* of the odds:

$$log(rac{p}{1-p})$$

The coefficients we get out are *log-odds* - they can be hard to interpret on their own.

```
coef(glm(coin_flips ~ 1, family = binomial(link = "logit")))
```

(Intercept)
-0.04000533

Odds ratios and log odds

If we exponeniate them, we get the *odds ratios* back.

exp(coef(glm(coin_flips ~ 1, family = binomial(link = "logit"))))

(Intercept)
0.9607843

So this one is roughly 1:1 heads and tails! But there's a nicer way to figure it out...

Taking penalties

Taking penalties

What's the probability that a particular penalty will be scored?

##		PSWQ	Anxious	Previous		Scored
##	1	18	21	56	Scored	Penalty
##	2	17	32	35	Scored	Penalty
##	3	16	34	35	Scored	Penalty
##	4	14	40	15	Scored	Penalty
##	5	5	24	47	Scored	Penalty
##	6	1	15	67	Scored	Penalty

- **PSWQ** = Penn State Worry Questionnaire
- **Anxiety** = State Anxiety
- **Previous** = Number of penalties scored previously

Taking penalties

pens

Call: glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"), data = penalties) ## ## ## Coefficients: ## (Intercept) PSWQ Anxious Previous ## -11.4926 -0.2514 0.2758 0.2026 ## ## Degrees of Freedom: 74 Total (i.e. Null); 71 Residual ## Null Deviance: 103.6 ## Residual Deviance: 47.42 AIC: 55.42

```
##
## Call:
## glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"),
      data = penalties)
##
##
## Deviance Residuals:
   Min 10 Median 30 Max
##
## -2.31374 -0.35996 0.08334 0.53860 1.61380
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -11.49256 11.80175 -0.974 0.33016
## PSWO -0.25137 0.08401 -2.992 0.00277 **
## Anxious 0.27585 0.25259 1.092 0.27480
## Previous 0.20261 0.12932 1.567 0.11719
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.638 on 74 degrees of freedom
##
## Residual deviance: 47.416 on 71 degrees of freedom
## AIC: 55.416
##
## Number of Fisher Scoring iterations: 6
```

The response scale and the link scale

The model is fit on the *link* scale.

The coefficients returned by the GLM are in *logits*, or *log-odds*.

coef(pens)

(Intercept) PSWQ Anxious Previous
-11.4925608 -0.2513693 0.2758489 0.2026082

How do we interpret them?

Converting logits to odds ratios

coef(pens)[2:4]

PSWQ Anxious Previous
-0.2513693 0.2758489 0.2026082

We can *exponentiate* the log-odds using the **exp()** function.

exp(coef(pens)[2:4])

PSWQ Anxious Previous
0.7777351 1.3176488 1.2245925

Odds ratios

An odds ratio greater than 1 means that the odds of an outcome increase.

An odds ratio less than 1 means that the odds of an outcome decrease.

```
exp(coef(pens)[2:4])
```

PSWQ Anxious Previous
0.7777351 1.3176488 1.2245925

From this table, it looks like the odds of scoring a penalty decrease with increases in PSWQ but increase with increases in State Anxiety or Previous scoring rates.

The response scale

The *response* scale is even *more* intuitive. It makes predictions using the *original* units. For a binomial distribution, that's *probabilities*. We can generate probabilities using the **predict()** function.

```
penalties$prob <- predict(pens, type = "response")
head(penalties)</pre>
```

##		PSWQ	Anxious	Previous		Scored	prob
##	1	18	21	56	Scored	Penalty	0.7542999
##	2	17	32	35	Scored	Penalty	0.5380797
##	3	16	34	35	Scored	Penalty	0.7222563
##	4	14	40	15	Scored	Penalty	0.2811731
##	5	5	24	47	Scored	Penalty	0.9675024
##	6	1	15	67	Scored	Penalty	0.9974486

Note that these model predictions *don't need to use the original data*. Let's see how the probability of scoring changes as PSWQ increases.

Create new data Make predictions Plot predictions

```
new_dat <-
   tibble::tibble(PSWQ = seq(0, 30, by = 2),
        Anxious = mean(penalties$Anxious),
        Previous = mean(penalties$Previous))</pre>
```

Note that these model predictions *don't need to use the original data*. Let's see how the probability of scoring changes as PSWQ increases.

Create new data	Make predictions	Plot predictions
	a = new_dat, "response")	

Note that these model predictions *don't need to use the original data*. Let's see how the probability of scoring changes as PSWQ increases.

Create new data Make predictions Plot predictions

```
ggplot(new_dat, aes(x = PSWQ, y = probs)) +
geom_point() +
geom_line()
```


Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12, and a Previous scoring record of 34.

Make the data	Predict log-odds	Predict odds	Predict probabilities
new_dat <- tibb		= 7, is = 22, ous = 34)	

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12, and a Previous scoring record of 34.

Make the data	Predict log-odds	Predict odds	Predict probabilities
predict(pens,	new_dat)		
## 1 ## -0.2947909			

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12, and a Previous scoring record of 34.

Make the data	Predict log-odds	Predict odds	Predict probabilities
exp(predict(per	ns, new_dat))		
## 1 ## 0.7446873			

Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12, and a Previous scoring record of 34.

Make the data Predict log-odds Predict odds Predict probabilities
predict(pens, new_dat, type = "response")
1

0.4268314

Plotting

The **sjPlot** package has some excellent built in plotting tools - try the **plot_model()** function.

library(sjPlot)
plot_model(pens,
 type = "pred",
 terms = "PSWQ")
Data were 'prettified'. Consider using `terms=

Results tables

sjPlot::tab_model(pens)

		Scored	
Predictors	Odds Ratios	CI	р
(Intercept)	0.00	0.00 - 64258.63	0.330
PSWQ	0.78	0.64 - 0.90	0.003
Anxious	1.32	0.81 – 2.24	0.275
Previous	1.22	0.96 – 1.61	0.117
Observations	75		
R ² Tjur	0.594		

head(full_titanic)

## # A tibble: 6	x 12									
## PassengerId	Survived Pcl	ass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
## <dbl></dbl>	<dbl> <d< td=""><td>bl></td><td><chr></chr></td><td><chr></chr></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td><td><chr></chr></td></d<></dbl>	bl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>
## 1 1	Θ	3	Braund, M~	male	22	1	Θ	A/5 2~	7.25	<na></na>
## 2 2	1	1	Cumings, ~	fema~	38	1	0	PC 17~	71.3	C85
## 3 3	1	3	Heikkinen~	fema~	26	0	0	STON/~	7.92	<na></na>
## 4 4	1	1	Futrelle,~	fema~	35	1	0	113803	53.1	C123
## 5 5	Θ	3	Allen, Mr~	male	35	0	0	373450	8.05	<na></na>
## 6 6	Θ	3	Moran, Mr~	male	NA	0	0	330877	8.46	<na></na>
## # with 1 r	nore variable	: Er	mbarked <ch< td=""><td>~></td><td></td><td></td><td></td><td></td><td></td><td></td></ch<>	~>						

Downloaded from Kaggle

##	#	A tibble:	: 4 x 3		
##	#	Groups:	Survi	ved, Sex	[4]
##		Survived	Sex	n	
##		<dbl></dbl>	<chr></chr>	<int></int>	
##	1	Θ	female	81	
##	2	Θ	male	468	
##	3	1	female	233	
##	4	1	male	109	

##	#	A tibb]	le: $2 \rightarrow$	< 4	
##		Sex	р	Y	Ν
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	female	0.742	233	314
##	2	male	0.189	109	577

```
##
## Call:
## glm(formula = Survived ~ Age + Pclass, family = binomial(), data = full_titanic)
##
## Deviance Residuals:
      Min 10 Median 30
##
                                       Max
## -2.1524 -0.8466 -0.6083 1.0031 2.3929
##
## Coefficients:
##
              Estimate Std. Error z value Pr(|z|)
## (Intercept) 2.296012
                        0.317629 7.229 4.88e-13 ***
## Age -0.041755 0.006736 -6.198 5.70e-10 ***
## Pclass2 -1.137533 0.237578 -4.788 1.68e-06 ***
## Pclass3 -2.469561
                        0.240182 -10.282 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 964.52 on 713 degrees of freedom
## Residual deviance: 827.16 on 710 degrees of freedom
```

```
library(emmeans)
emmeans(age_class,
            ~Age|Pclass,
            type = "response")
```

```
## Pclass = 1:
## Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.742 0.0339 Inf 0.670 0.803
##
## Pclass = 2:
## Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.480 0.0394 Inf 0.403 0.557
##
## Pclass = 3:
## Age prob SE df asymp.LCL asymp.UCL
## 29.7 0.196 0.0216 Inf 0.157 0.241
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
```

Some final notes on Generalized Linear Models

Today has focussed on **logistic** regression with *binomial* distributions.

But Generalized Linear Models can be expanded to deal with many different types of outcome variable!

e.g. Counts follow a Poisson distribution - use family = "poisson"

Ordinal variables (e.g. Likert scale) can be modelled using *cumulative logit* models (using the **ordinal** or **brms** packages).

Suggested reading for categorical ordinal regression

Liddell & Kruschke (2018). Analyzing ordinal data with metric models: What could possibly go Wrong?

Buerkner & Vuorre (2018). Ordinal Regression Models in Psychology: A Tutorial