
Multiple and logistic regressionMultiple and logistic regression
2022/04/192022/04/19



Linear regression - a (brief) recapLinear regression - a (brief) recap
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## `geom_smooth()` using formula 'y ~ x' Our job is to �gure out the mathematical
relationship between our predictor(s) and our
outcome.

Linear regression

Y = b0 + b1Xi + εi
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Linear regression
Y = b0 + b1Xi + εi
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Linear regression

Y - The outcome - the dependent variable.

 - The intercept. This is the value of  when  = 0.

 - The regression coe�cients. This describes the steepness of the relationship between the outcome and
slope(s).

 - The predictors - our independent variables.

 - The random error - variability in our dependent variable that is not explained by our predictors.

Y = b0 + b1Xi + εi

b0 Y X

b1

Xi

εi
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Regression assumptionsRegression assumptions
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Regression assumptions
Linear regression has a number of assumptions:

Normally distributed errors

Homoscedasticity (of errors)

Independence of errors

Linearity

No perfect multicollinearity
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The errors, , are the variance left over after your
model is �t.

An example like that on the left is what you want to
see!

There is no clear pattern; the dots are evenly
distributed around zero.

Normally distributed errors
εi
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In contrast, the residuals on the left are skewed.

This most often happens with data that are
bounded. For example, reaction times cannot be
below zero; negative values are impossible.

Skewed errors
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The performance package has a very handy
function called check_model(), which shows a
variety of ways of checking the assumptions all at
once.

library(performance)

check_model(test_skew)

Checking assumptions

10 / 48



You can follow up suspicious looking plots with
individual functions like check_normality(),
which uses shapiro.test() to check the residuals
and also provides nice plots.

Rely on the plots more than signi�cance tests...

plot(check_normality(test_skew),

     type = "qq")

Checking assumptions
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1) We can think about transformations 😱

2) We could consider non-parametric stats - things
like wilcox.test(), friedman.test(),
kruskal.test(), all of which are based on rank
transformations and thus are really more like point
1 😱

3) We should think about why the assumptions
might be violated. Is this just part of how the data is
generated? 🤔

## Warning: Maximum value of original data is not i

##   Model may not capture the variation of the dat

So, about violated assumptions? 😱
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Generalized Linear ModelsGeneralized Linear Models
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The normal distribution can also be called the
Gaussian distribution.

The linear regression models we've used so far
assume a Gaussian distribution of errors.

Distributional families
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Generalized linear models
A Generalized Linear Model - �t with glm() - allows you to specify what type of family of probability distributions
the data are drawn from.

skewed_var <- rgamma(300, 1)

hist(skewed_var)
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Generalized linear models
A Generalized Linear Model - �t with glm() - allows you to specify what type of family of probability distributions
the data are drawn from.

lm(skewed_var ~ X1 + X2)

## 

## Call:

## lm(formula = skewed_var ~ X1 + X2)

## 

## Coefficients:

## (Intercept)           X1           X2  

##     1.01292     -0.13856      0.02078
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Generalized linear models
A Generalized Linear Model - �t with glm() - allows you to specify what type of family of probability distributions
the data are drawn from.

glm(skewed_var ~ X1 + X2, family = "gaussian")

## 

## Call:  glm(formula = skewed_var ~ X1 + X2, family = "gaussian")

## 

## Coefficients:

## (Intercept)           X1           X2  

##     1.01292     -0.13856      0.02078  

## 

## Degrees of Freedom: 299 Total (i.e. Null);  297 Residual

## Null Deviance:        329.7 

## Residual Deviance: 323.6     AIC: 882.1
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Categorical outcome variables
Suppose you have a discrete, categorical outcome.

Examples of categorical outcomes:

correct or incorrect answer
person commits an o�ence or does not

Examples of counts:

Number of items successfully recalled
Number of o�ences committed

16 / 48



The binomial distribution
A coin only has two sides: heads or tails.

Assuming the coin is fair, the probability -  - that it lands on heads is .5. So the probability it lands on tails - 
 is also .5.

This type of variable is called a Bernoulli random variable.

If you toss the coin many times, the count of how many heads and how many tails occur is called a binomial
distribution.

P

1 − P
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Binomial distribution
If we throw the coin 100 times, how many times do we get tails?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)

qplot(coin_flips)
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Binomial distribution
What happens if we try to model individual coin �ips with lm()?

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)

x3 <- rnorm(100) # this is just a random variable for the purposes of demonstration!

check_model(lm(coin_flips ~ x3))
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Logistic regression
We get glm() to model a binomial distribution by specifying the binomial family.

coin_flips <- rbinom(n = 100, size = 1, prob = 0.5)

glm(coin_flips ~ 1,

    family = binomial(link = "logit"))

## 

## Call:  glm(formula = coin_flips ~ 1, family = binomial(link = "logit"))

## 

## Coefficients:

## (Intercept)  

##    -0.04001  

## 

## Degrees of Freedom: 99 Total (i.e. Null);  99 Residual

## Null Deviance:        138.6 

## Residual Deviance: 138.6     AIC: 140.6
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GLM with logit link 😎 GLM with Gaussian link 😭 

Logistic regression
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The logit transformation is used to link our
predictors to our discrete outcome variable.

It helps us constrain the in�uence of our predictors
to the range 0-1, and account for the change in
variance with probability.

Logistic regression
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As probabilities approach zero or one, the range of
possible values decreases.

Thus, the in�uence of predictors on the response
scale must also decrease as we reach one or zero.

Logistic regression
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Logistic regression

 - The probability of the outcome happening.

P(Y ) =
1

1 + e−(b0 + b1X1 + εi)

P(Y )
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Logistic regression

 - The probability of the outcome happening.

 - The log-odds (logits) of the predictors.

P(Y ) =
1

1 + e−(b0 + b1X1 + εi)

P(Y )

1
1+e−(...)
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Odds ratios and log odds
Odds are the ratio of one outcome versus the others. e.g. The odds of a randomly chosen day being a Friday
are 1 to 6 (or 1/6 = .17)

Log odds are the natural log of the odds:

The coe�cients we get out are log-odds - they can be hard to interpret on their own.

coef(glm(coin_flips ~ 1, family = binomial(link = "logit")))

## (Intercept) 

## -0.04000533

log( )
p

1 − p
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Odds ratios and log odds
If we exponeniate them, we get the odds ratios back.

exp(coef(glm(coin_flips ~ 1, family = binomial(link = "logit"))))

## (Intercept) 

##   0.9607843

So this one is roughly 1:1 heads and tails! But there's a nicer way to �gure it out...
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Taking penaltiesTaking penalties
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Taking penalties
What's the probability that a particular penalty will be scored?

##   PSWQ Anxious Previous         Scored

## 1   18      21       56 Scored Penalty

## 2   17      32       35 Scored Penalty

## 3   16      34       35 Scored Penalty

## 4   14      40       15 Scored Penalty

## 5    5      24       47 Scored Penalty

## 6    1      15       67 Scored Penalty

PSWQ = Penn State Worry Questionnaire
Anxiety = State Anxiety
Previous = Number of penalties scored previously
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Taking penalties
pens <- glm(Scored ~ PSWQ + Anxious + Previous,

            family = binomial(link = "logit"),

            data = penalties)

pens

## 

## Call:  glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"), 

##     data = penalties)

## 

## Coefficients:

## (Intercept)         PSWQ      Anxious     Previous  

##    -11.4926      -0.2514       0.2758       0.2026  

## 

## Degrees of Freedom: 74 Total (i.e. Null);  71 Residual

## Null Deviance:        103.6 

## Residual Deviance: 47.42     AIC: 55.42
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## PSWQ         -0.25137    0.08401  -2.992  0.00277 **

## 

## Call:

## glm(formula = Scored ~ PSWQ + Anxious + Previous, family = binomial(link = "logit"), 

##     data = penalties)

## 

## Deviance Residuals: 

##      Min        1Q    Median        3Q       Max  

## -2.31374  -0.35996   0.08334   0.53860   1.61380  

## 

## Coefficients:

##              Estimate Std. Error z value Pr(>|z|)   

## (Intercept) -11.49256   11.80175  -0.974  0.33016   

## Anxious       0.27585    0.25259   1.092  0.27480   

## Previous      0.20261    0.12932   1.567  0.11719   

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

##     Null deviance: 103.638  on 74  degrees of freedom

## Residual deviance:  47.416  on 71  degrees of freedom

## AIC: 55.416

## 

## Number of Fisher Scoring iterations: 6
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The response scale and the link scale
The model is �t on the link scale.

The coe�cients returned by the GLM are in logits, or log-odds.

coef(pens)

## (Intercept)        PSWQ     Anxious    Previous 

## -11.4925608  -0.2513693   0.2758489   0.2026082

How do we interpret them?
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Converting logits to odds ratios
coef(pens)[2:4]

##       PSWQ    Anxious   Previous 

## -0.2513693  0.2758489  0.2026082

We can exponentiate the log-odds using the exp() function.

exp(coef(pens)[2:4])

##      PSWQ   Anxious  Previous 

## 0.7777351 1.3176488 1.2245925
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Odds ratios
An odds ratio greater than 1 means that the odds of an outcome increase.

An odds ratio less than 1 means that the odds of an outcome decrease.

exp(coef(pens)[2:4])

##      PSWQ   Anxious  Previous 

## 0.7777351 1.3176488 1.2245925

From this table, it looks like the odds of scoring a penalty decrease with increases in PSWQ but increase with
increases in State Anxiety or Previous scoring rates.
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The response scale
The response scale is even more intuitive. It makes predictions using the original units. For a binomial
distribution, that's probabilities. We can generate probabilities using the predict() function.

penalties$prob <- predict(pens, type = "response")

head(penalties)

##   PSWQ Anxious Previous         Scored      prob

## 1   18      21       56 Scored Penalty 0.7542999

## 2   17      32       35 Scored Penalty 0.5380797

## 3   16      34       35 Scored Penalty 0.7222563

## 4   14      40       15 Scored Penalty 0.2811731

## 5    5      24       47 Scored Penalty 0.9675024

## 6    1      15       67 Scored Penalty 0.9974486
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Model predictions
Note that these model predictions don't need to use the original data. Let's see how the probability of scoring
changes as PSWQ increases.

new_dat <- 

  tibble::tibble(PSWQ = seq(0, 30, by = 2),

                 Anxious = mean(penalties$Anxious),

                 Previous = mean(penalties$Previous))
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Model predictions
Note that these model predictions don't need to use the original data. Let's see how the probability of scoring
changes as PSWQ increases.

new_dat$probs <-

  predict(pens,

          newdata = new_dat,

          type = "response")

36 / 48

Create new data Make predictions Plot predictions

file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=create-new-data#panelset1_create-new-data
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=make-predictions#panelset1_make-predictions
file:///F:/GitHub/resmethods/slides/3-generalized-linear-models.html?panelset1=plot-predictions#panelset1_plot-predictions


Model predictions
Note that these model predictions don't need to use the original data. Let's see how the probability of scoring
changes as PSWQ increases.

ggplot(new_dat, aes(x = PSWQ, y = probs)) +

  geom_point() +

  geom_line()
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12,
and a Previous scoring record of 34.

new_dat <- tibble::tibble(PSWQ = 7,

                          Anxious = 22,

                          Previous = 34)
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12,
and a Previous scoring record of 34.

predict(pens, new_dat)

##          1 

## -0.2947909
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12,
and a Previous scoring record of 34.

exp(predict(pens, new_dat))

##         1 

## 0.7446873
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Model predictions
Imagine you wanted to the probability of scoring for somebody with a PSWQ score of 7, an Anxious rating of 12,
and a Previous scoring record of 34.

predict(pens, new_dat, type = "response")

##         1 

## 0.4268314
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The sjPlot package has some excellent built in
plotting tools - try the plot_model() function.

library(sjPlot)

plot_model(pens,

           type = "pred",

           terms = "PSWQ")

## Data were 'prettified'. Consider using `terms="PSWQ [all]"` to get smooth plots.

Plotting
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Results tables
sjPlot::tab_model(pens)

  Scored

Predictors Odds Ratios CI p

(Intercept) 0.00 0.00 – 64258.63 0.330

PSWQ 0.78 0.64 – 0.90 0.003

Anxious 1.32 0.81 – 2.24 0.275

Previous 1.22 0.96 – 1.61 0.117

Observations 75

R2 Tjur 0.594
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The Titanic datasetThe Titanic dataset
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The Titanic datasetThe Titanic dataset
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The Titanic dataset
head(full_titanic)

## # A tibble: 6 x 12

##   PassengerId Survived Pclass Name       Sex     Age SibSp Parch Ticket  Fare Cabin

##         <dbl>    <dbl>  <dbl> <chr>      <chr> <dbl> <dbl> <dbl> <chr>  <dbl> <chr>

## 1           1        0      3 Braund, M~ male     22     1     0 A/5 2~  7.25 <NA> 

## 2           2        1      1 Cumings, ~ fema~    38     1     0 PC 17~ 71.3  C85  

## 3           3        1      3 Heikkinen~ fema~    26     0     0 STON/~  7.92 <NA> 

## 4           4        1      1 Futrelle,~ fema~    35     1     0 113803 53.1  C123 

## 5           5        0      3 Allen, Mr~ male     35     0     0 373450  8.05 <NA> 

## 6           6        0      3 Moran, Mr~ male     NA     0     0 330877  8.46 <NA> 

## # ... with 1 more variable: Embarked <chr>

Downloaded from Kaggle
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The Titanic dataset
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full_titanic %>% 

  group_by(Survived,

           Sex) %>%

  count()

## # A tibble: 4 x 3

## # Groups:   Survived, Sex [4]

##   Survived Sex        n

##      <dbl> <chr>  <int>

## 1        0 female    81

## 2        0 male     468

## 3        1 female   233

## 4        1 male     109

full_titanic %>%

  group_by(Sex) %>%

  summarise(p = mean(Survived),

            Y = sum(Survived),

            N = n())

## # A tibble: 2 x 4

##   Sex        p     Y     N

##   <chr>  <dbl> <dbl> <int>

## 1 female 0.742   233   314

## 2 male   0.189   109   577

The Titanic dataset
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The Titanic dataset
## 

## Call:

## glm(formula = Survived ~ Age + Pclass, family = binomial(), data = full_titanic)

## 

## Deviance Residuals: 

##     Min       1Q   Median       3Q      Max  

## -2.1524  -0.8466  -0.6083   1.0031   2.3929  

## 

## Coefficients:

##              Estimate Std. Error z value Pr(>|z|)    

## (Intercept)  2.296012   0.317629   7.229 4.88e-13 ***

## Age         -0.041755   0.006736  -6.198 5.70e-10 ***

## Pclass2     -1.137533   0.237578  -4.788 1.68e-06 ***

## Pclass3     -2.469561   0.240182 -10.282  < 2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

##     Null deviance: 964.52  on 713  degrees of freedom

## Residual deviance: 827.16  on 710  degrees of freedom 45 / 48



The Titanic dataset
library(emmeans)

emmeans(age_class,

        ~Age|Pclass,

        type = "response")

## Pclass = 1:

##   Age  prob     SE  df asymp.LCL asymp.UCL

##  29.7 0.742 0.0339 Inf     0.670     0.803

## 

## Pclass = 2:

##   Age  prob     SE  df asymp.LCL asymp.UCL

##  29.7 0.480 0.0394 Inf     0.403     0.557

## 

## Pclass = 3:

##   Age  prob     SE  df asymp.LCL asymp.UCL

##  29.7 0.196 0.0216 Inf     0.157     0.241

## 

## Confidence level used: 0.95 

## Intervals are back-transformed from the logit scale
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Some final notes on Generalized Linear
Models
Today has focussed on logistic regression with binomial distributions.

But Generalized Linear Models can be expanded to deal with many di�erent types of outcome variable!

e.g. Counts follow a Poisson distribution - use family = "poisson"

Ordinal variables (e.g. Likert scale) can be modelled using cumulative logit models (using the ordinal or brms
packages).
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Suggested reading for categorical ordinal
regression
Liddell & Kruschke (2018). Analyzing ordinal data with metric models: What could possibly go Wrong?

Buerkner & Vuorre (2018). Ordinal Regression Models in Psychology: A Tutorial
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https://psyarxiv.com/x8swp/

