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"A group of blind men heard that a strange animal,
called an elephant, had been brought to the town,
but none of them were aware of its shape and form.
Out of curiosity, they said: "We must inspect and
know it by touch, of which we are capable"."

Psychometrics
Many of the things we want to measure are constructs that are not directly measurable. e.g. IQ, anxiety, risk
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We can try to capture different aspects of latent
variables.

For example, we might ask a variety of different
questions as with standard scales and
questionnaires like

HEXACO
Historical Clinical Risk Management-20 (HCR-20)
Patient Health Questionnaire 9 (PHQ-9)

Psychometrics
Many of the things we want to measure are constructs that are not directly measurable. e.g. IQ, anxiety, risk
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The HEXACO personality measures
The HEXACO scale measures personality using 60 or 100 item questionnaires.

These questionnaires supposedly breaks personality down into six different factors:

Honesty-Humility
Emotionality
eXtraversion [sic]
Agreeableness
Conscientiousness
Openness to Experience
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Example HEXACO items
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Performing factor and component analysisPerforming factor and component analysis
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Each axis is a dimension relating to an underlying
construct.

In this example, based on the HEXACO scale, the x-
axis represents the Honesty-Humility dimension,
while the y-axis represents the Emotionality
dimension.

Graphical representation of factor analysis
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Each dot represents the score on an individual item.

The points that cluster together are correlated and
are measuring part of the same underlying
dimension.

We can shift the axes to pass through these points.

Graphical representation of factor analysis
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Items that measure the Emotionality factor cluster -
or load - high on the y-axis.

Items that measure the Honesty-Humility factor load
high on the x-axis.

Factor loadings
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The distance of an item from zero on a particular
dimension indicates how heavily the item loads on
that dimension.

Items that measure the Emotionality factor cluster -
or load - high on the y-axis.

Items that measure the Honesty-Humility factor load
high on the x-axis.

Factor loadings
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The items that load on the Honesty-Humility axis are
close to the centre of the y-axis, but distant from
zero on the x-axis.

Factor loadings
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The items that load on the Honesty-Humility axis are
close to the centre of the y-axis, but distant from
zero on the x-axis.

The items that load on the Emotionality factor are
close to the centre of the x-axis, but distant from
zero on the y-axis.

Factor loadings
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Let's add a third set of items, a set of items that
correlate with each other but not with either
existing cluster.

These clearly load negatively on both our existing
factors, but we may need another factor to
characterise them properly.

Factor loadings

13 / 54



Let's add a third set of items, a set of items that
correlate with each other but not with either
existing cluster.

These clearly load negatively on both our existing
factors, but we may need another factor to
characterise them properly.

For each distinct factor, we need an additional
dimension.

Factor loadings
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Preparing for factor analysisPreparing for factor analysis
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Correlations are at the heart of how we understand
which of our questionnaire items measure the same
factors.

There are 60-item and 100-item versions of the
HEXACO.

Here we take a look a small subset of those items.

We have two clusters of items that correlate with with
each other but not with the items in the other cluster.

The R-matrix
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The identity matrix
The matrix on the right is the identity matrix - this is what the correlation matrix would be like without structure.
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Checking the R-matrix
We need to know whether there is sufficient correlative structure in the data!

The Bartlett test - run using the check_sphericity_bartlett() function from parameters - is used to check
whether the correlation matrix significantly differs from the identity matrix.

check_sphericity_bartlett(hexaco_subset)

## # Test of Sphericity

##

## Bartlett's test of sphericity suggests that there is sufficient significant correlation

in the data for factor analysis (Chisq(15) = 187.45, p < .001).
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Checking sampling adequacy
We also need to know if there is enough variability in the data.

The Kaiser-Meyer-Olkin statistic measures the degree to which each variable in the data can be predicted from
the other variables.

KMO ranges from 0 to 1; values above .7 are generally considered acceptable.

check_kmo(hexaco_only)

## The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data seems

appropriate for factor analysis (KMO = 0.77).

## # KMO Measure of Sampling Adequacy

##
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Checking for sufficient factor structure
The check_factorstructure() function from parameters does both of these at once!

check_factorstructure(hexaco_only)

## # Is the data suitable for Factor Analysis?

##

##   - KMO: The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data

seems appropriate for factor analysis (KMO = 0.77).

##   - Sphericity: Bartlett's test of sphericity suggests that there is sufficient

significant correlation in the data for factor analysis (Chisq(1770) = 7153.57, p < .001).
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How many factors do we need?How many factors do we need?
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We need to figure out how many factors we need to
break down our data.

In theory, we could have one per item.

... but that would be a lot of factors.

Here, it looks like there are at least five different
groups.

How many factors do we need?

22 / 54



Catell (1966) proposed the scree plot as a way to
choose how many factors to keep.

The y-axis shows the eigenvalue of each potential
factor, up to the maximum number possible.

Scree plots

scree(hexaco_only, factors = FALSE)
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Eigenvalues
Eigenvalues tell us how much variance a particular factor explains.

Higher values mean more variance explained, and the more variance a factor explains, the more important it is.

They help us determine whether a factor is worth extracting for further analysis.

eigen(cor(hexaco_only))$values

##  [1] 6.6794022 4.9331351 4.1642486 3.6237441 3.1055095 2.4175969

##  [7] 1.8303788 1.7109257 1.6276844 1.4397559 1.3272585 1.2604329

## [13] 1.1922544 1.1163815 1.0921884 1.0615500 0.9873230 0.9548026

## [19] 0.9119362 0.8633100 0.8313116 0.7990644 0.7715206 0.7308254

## [25] 0.7084408 0.6727497 0.6619408 0.6319305 0.6145891 0.5917170

## [31] 0.5852278 0.5682678 0.5418668 0.5317604 0.5112533 0.4972359

## [37] 0.4697304 0.4557374 0.4375651 0.4280798 0.4018966 0.3945424

## [43] 0.3844344 0.3547073 0.3484113 0.3357983 0.3289566 0.3065944

## [49] 0.2977506 0.2890174 0.2725412 0.2599978 0.2595737 0.2436230

## [55] 0.2312924 0.2221693 0.2179546 0.1937423 0.1609424 0.1554209
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We look for the point of inflexion - the point at which
the eigenvalues have (more or less) stopped
decreasing much.

It's probably around 9 components here!

Scree plots
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An alternative to looking for the point of inflexion is
to keep any factor where the eigenvalue is higher
than 1 - this is called Kaiser's criterion.

This would pick out around 16 factors here.

Kaiser's criterion tends to keep too many factors.

Kaiser's criterion
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Arguably the best method is Parallel Analysis,
using the fa.parallel() function.

In parallel analysis, random data is generated and
compared to the true data.

Factors above the red line should be kept. Here, it's
9, just like our "point of inflexion" rule would
suggest.

Parallel analysis

fa.parallel(hexaco_only,

            fa = "pc")

## Parallel analysis suggests that the

number of factors =  NA  and the number of

components =  9
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Principal Component AnalysisPrincipal Component Analysis
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Principal Component Analysis
There are a number of differenct factor analysis methods available. We'll look at PCA. PCA is a dimension
reduction method.

It produces a simplified model of the data that captures the inter-relationships between variables.

To run PCA on this kind of data, we can use the principal() function from the psych package.

?principal
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Principal Component Analysis
Having decided we need nine factors, we use the principal() function to extract them from the data.

(Output is on the next slide!)

pca_hexa <- principal(hexaco_only,

                      nfactors = 9,

                      rotate = "varimax")
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pca_hexa

## Principal Components Analysis

## Call: principal(r = hexaco_only, nfactors = 9, rotate = "varimax")

## Standardized loadings (pattern matrix) based upon correlation matrix

##            RC1   RC2   RC3   RC6   RC9   RC5   RC4   RC7   RC8   h2

## hexaco1  -0.17  0.00  0.74  0.03 -0.01 -0.03  0.09  0.04  0.05 0.59

## hexaco2  -0.01  0.21  0.02  0.10 -0.05 -0.58 -0.03  0.24  0.17 0.48

## hexaco3   0.59 -0.06 -0.09  0.19 -0.15  0.06  0.02  0.01  0.15 0.44

## hexaco4   0.15 -0.12  0.08  0.17 -0.59 -0.25  0.09  0.23  0.09 0.56

## hexaco5   0.10  0.50  0.03 -0.14 -0.06 -0.06 -0.08  0.03  0.01 0.30

## hexaco6   0.14  0.02  0.06  0.64  0.06 -0.03  0.00  0.06 -0.24 0.49

## hexaco7  -0.01 -0.06 -0.59  0.04  0.06 -0.14  0.07 -0.03 -0.08 0.39

## hexaco8  -0.01  0.10 -0.03  0.13 -0.23 -0.19  0.20  0.61  0.06 0.53

## hexaco9  -0.58 -0.10 -0.12 -0.12  0.08  0.00 -0.03  0.07  0.19 0.42

## hexaco10 -0.11 -0.27  0.09 -0.66  0.15  0.21  0.02  0.08 -0.03 0.60

## hexaco11  0.15  0.16  0.32 -0.12  0.02  0.14 -0.64  0.12  0.01 0.60

## hexaco12 -0.05  0.53  0.00  0.02  0.37 -0.05 -0.07  0.26  0.07 0.50

## hexaco13  0.00  0.07 -0.65  0.05 -0.01  0.36 -0.14  0.21 -0.08 0.63

## hexaco14 -0.11 -0.12  0.19 -0.06 -0.05  0.30  0.01 -0.48  0.20 0.43

## hexaco15 -0.65 -0.01  0.01  0.00  0.10  0.14 -0.05  0.24  0.07 0.52

## hexaco16  0.09  0.16  0.21  0.01 -0.21  0.14  0.65  0.06 -0.13 0.58

## hexaco17  0.14  0.67  0.04 -0.03  0.09  0.03  0.15  0.18  0.00 0.54

## hexaco18  0.22  0.03 -0.05  0.46  0.11  0.08  0.08  0.17  0.08 0.33

## hexaco19 -0.11  0.01  0.33  0.11 -0.19  0.05 -0.21 -0.11  0.47 0.45

## hexaco20  0.05 -0.12  0.27 -0.16  0.08  0.64  0.05 -0.15  0.13 0.57
31 / 54



fa.diagram(pca_hexa)
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Factor RotationFactor Rotation
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Remember that each factor (or component!) adds an
additional axis to this plot. Here, the items load
highly on one particular component each.

But when there are many items and many
components, the items tend to load on multiple
components.

Factor rotation
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Items tend to load largely on the most important
(highest eigenvalue) components, and then a little
bit on the smaller components.

We can alter how we place the axes, rotating them
such that each individual item loads on fewer
components!

Factor rotation
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There are two types of rotation:

Orthogonal

Factors are forced to be uncorrelated

Oblique

Factors are allowed to be correlated

Factor rotation
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In this case, the items are slightly off the original
axes.

Orthogonal rotation
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In this case, the items are slightly off the original
axes.

If we rotate the axes slightly clockwise, the items are
now back on the axes.

Note that the angles of the axes stay orthogonal (i.e.
90 degrees).

Orthogonal rotation
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Orthogonal rotation
The typical method of orthogonal rotation is called varimax.

principal(hexaco_only,

          nfactors = 9,

          rotate = "varimax")

## Principal Components Analysis

## Call: principal(r = hexaco_only, nfactors = 9, rotate = "varimax")

## Standardized loadings (pattern matrix) based upon correlation matrix

##            RC1   RC2   RC3   RC6   RC9   RC5   RC4   RC7   RC8   h2

## hexaco1  -0.17  0.00  0.74  0.03 -0.01 -0.03  0.09  0.04  0.05 0.59

## hexaco2  -0.01  0.21  0.02  0.10 -0.05 -0.58 -0.03  0.24  0.17 0.48

## hexaco3   0.59 -0.06 -0.09  0.19 -0.15  0.06  0.02  0.01  0.15 0.44

## hexaco4   0.15 -0.12  0.08  0.17 -0.59 -0.25  0.09  0.23  0.09 0.56

## hexaco5   0.10  0.50  0.03 -0.14 -0.06 -0.06 -0.08  0.03  0.01 0.30

## hexaco6   0.14  0.02  0.06  0.64  0.06 -0.03  0.00  0.06 -0.24 0.49

## hexaco7  -0.01 -0.06 -0.59  0.04  0.06 -0.14  0.07 -0.03 -0.08 0.39

## hexaco8  -0.01  0.10 -0.03  0.13 -0.23 -0.19  0.20  0.61  0.06 0.53

## hexaco9  -0.58 -0.10 -0.12 -0.12  0.08  0.00 -0.03  0.07  0.19 0.42

## hexaco10 -0.11 -0.27  0.09 -0.66  0.15  0.21  0.02  0.08 -0.03 0.60 39 / 54



In this case, the items are displaced from the axes
slightly differently.

Oblique rotation
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In this case, the items are displaced from the axes
slightly differently.

Here, we allow the axes to be non-orthogonal (i.e.
oblique - not 90 degrees), which means the axes
correlate with each other.

Oblique rotation
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Oblique rotation
The typical method of oblique rotation is called oblimin.

principal(hexaco_only,

          nfactors = 9,

          rotate = "oblimin")

## Principal Components Analysis

## Call: principal(r = hexaco_only, nfactors = 9, rotate = "oblimin")

## Standardized loadings (pattern matrix) based upon correlation matrix

##            TC1   TC2   TC3   TC6   TC5   TC4   TC7   TC9   TC8   h2

## hexaco1  -0.18 -0.03  0.74  0.07  0.10 -0.05  0.02  0.15  0.03 0.59

## hexaco2  -0.01  0.16  0.10  0.12 -0.55 -0.03 -0.04  0.21  0.20 0.48

## hexaco3   0.57 -0.08 -0.10  0.17  0.07 -0.12 -0.01 -0.02  0.15 0.44

## hexaco4   0.08 -0.13  0.06  0.17 -0.21 -0.58  0.03  0.20  0.08 0.56

## hexaco5   0.09  0.50 -0.02 -0.15 -0.05 -0.08 -0.09  0.01  0.02 0.30

## hexaco6   0.10 -0.05  0.10  0.59  0.03  0.11  0.01  0.06 -0.28 0.49

## hexaco7   0.01 -0.04 -0.52  0.02 -0.24  0.11  0.14 -0.11 -0.06 0.39

## hexaco8  -0.04  0.03 -0.01  0.10 -0.17 -0.19  0.16  0.59  0.05 0.53

## hexaco9  -0.56 -0.09 -0.12 -0.04 -0.03  0.05  0.00  0.06  0.18 0.42

## hexaco10 -0.05 -0.23  0.05 -0.67  0.15  0.09  0.00  0.13  0.01 0.60 42 / 54



Which rotation to use?
For the most part, use orthogonal rotation (i.e. Varimax).

Oblique rotation is defensible when there are a priori, theoretical reasons to believe there will be correlations
between dimensions.

principal(hexaco_only,

          nfactors = 9,

          rotate = "varimax")

principal(hexaco_only,

          nfactors = 9,

          rotate = "oblimin")
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Factor interpretationFactor interpretation
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Final PCA
Let's finish off by looking closely at the PCA solution with nine factors and varimax rotation.

pca_hexa

## Principal Components Analysis

## Call: principal(r = hexaco_only, nfactors = 9, rotate = "varimax")

## Standardized loadings (pattern matrix) based upon correlation matrix

##            RC1   RC2   RC3   RC6   RC9   RC5   RC4   RC7   RC8   h2

## hexaco1  -0.17  0.00  0.74  0.03 -0.01 -0.03  0.09  0.04  0.05 0.59

## hexaco2  -0.01  0.21  0.02  0.10 -0.05 -0.58 -0.03  0.24  0.17 0.48

## hexaco3   0.59 -0.06 -0.09  0.19 -0.15  0.06  0.02  0.01  0.15 0.44

## hexaco4   0.15 -0.12  0.08  0.17 -0.59 -0.25  0.09  0.23  0.09 0.56

## hexaco5   0.10  0.50  0.03 -0.14 -0.06 -0.06 -0.08  0.03  0.01 0.30

## hexaco6   0.14  0.02  0.06  0.64  0.06 -0.03  0.00  0.06 -0.24 0.49

## hexaco7  -0.01 -0.06 -0.59  0.04  0.06 -0.14  0.07 -0.03 -0.08 0.39

## hexaco8  -0.01  0.10 -0.03  0.13 -0.23 -0.19  0.20  0.61  0.06 0.53

## hexaco9  -0.58 -0.10 -0.12 -0.12  0.08  0.00 -0.03  0.07  0.19 0.42

## hexaco10 -0.11 -0.27  0.09 -0.66  0.15  0.21  0.02  0.08 -0.03 0.60

## hexaco11  0.15  0.16  0.32 -0.12  0.02  0.14 -0.64  0.12  0.01 0.60

## hexaco12 -0.05  0.53  0.00  0.02  0.37 -0.05 -0.07  0.26  0.07 0.50 45 / 54



Final PCA
Down at the bottom of our output are statistics about the amount of variance our factors explain.

##                             RC1        RC2        RC3        RC6

## SS loadings           4.4744097 4.45609263 3.54088899 3.46245860

## Proportion Var        0.0745735 0.07426821 0.05901482 0.05770764

## Cumulative Var        0.0745735 0.14884171 0.20785652 0.26556417

## Proportion Explained  0.1486879 0.14807922 0.11766634 0.11506004

## Cumulative Proportion 0.1486879 0.29676714 0.41443348 0.52949352

##                              RC9        RC5        RC4        RC7

## SS loadings           3.18062363 3.14794568 3.01616898 2.87416485

## Proportion Var        0.05301039 0.05246576 0.05026948 0.04790275

## Cumulative Var        0.31857456 0.37104032 0.42130980 0.46921255

## Proportion Explained  0.10569446 0.10460854 0.10022951 0.09551061

## Cumulative Proportion 0.63518797 0.73979651 0.84002602 0.93553663

##                              RC8

## SS loadings           1.93987219

## Proportion Var        0.03233120

## Cumulative Var        0.50154376

## Proportion Explained  0.06446337

## Cumulative Proportion 1.00000000
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Interpreting the output
It looks like there are 10 items that load on our first factor.

The top three are the following items from the HEXACO-60:

Item 21: People think of me as someone who has a quick temper.

Item 45: Most people tend to get angry more quickly than I do.

Item 15: People sometimes tell me that I'm too stubborn.
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Interpreting the output
In fact, the ten items are all those that correspond to Agreeableness:

Note that several should be reversed, and they have negative factor loadings because we didn't actually reverse
them!
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How do individual participants score?
Once we know what our factors are, how do we convert each participant's data into something that tells us how
that participant rated for each factor?

head(pca_hexa$scores)

##             RC1         RC2        RC3        RC6        RC9

## [1,] -2.0370952 -0.74766949  1.0906981  2.4308437 -0.7581765

## [2,] -1.3067772  0.07377406 -0.9048852  0.6698510 -1.3186814

## [3,] -0.4223559 -0.43381267 -1.0134896 -0.6835562  1.2656719

## [4,] -1.4688597 -2.01939403 -1.6466062  2.3991087  0.1195594

## [5,]  0.8065396  0.42209968 -0.6753594  0.9384934 -1.7880986

## [6,]  0.4092487 -1.41218241 -1.5163114 -2.2545879  1.9586546

##             RC5         RC4        RC7        RC8

## [1,] -0.5199759 -0.64786941  1.4417465 -0.2530221

## [2,] -0.4670667 -0.49776904 -0.2658352 -0.8120384

## [3,] -1.1032942  0.19409792  0.6168094  0.2996072

## [4,] -1.3225573 -1.10714105 -0.1981588 -0.4550324

## [5,] -0.7686581  1.06179528 -1.2344637  0.4208103

## [6,] -1.7329438  0.03392348 -1.0618261 -1.5631121

49 / 54



The factor scores can be treated as if they were any
other variable!
Here I combine the Factor Scores
with the original data.

A quick example

final_data <- cbind(crime,

                    pca_hexa$scores)

ggplot(final_data,

       aes(x = RC1,

           fill = factor(sex,

                         levels = c(1,

2),

                         labels =

c("Female", "Male")))) +

  geom_density(alpha = 0.5) +

  scale_fill_brewer(palette = "Dark2") +

  labs(x = "Agreeableness",

       fill = "") +

  theme_classic() +

  theme(text = element_text(size = 20)) 50 / 54



Why would you do this?Why would you do this?
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Why use factor analysis?
1) Rather than trying to analyse many, many different items as if they are each independent from each other,
you can reduce the task down to a smaller set of factors

2) Factor analysis helps you condense the information down, while still retaining the benefit of having many
different, independent measurements of the underlying constructs.

3) During the design of questionnaires, it helps you work out which items are measuring which thing, and which
items are worth keeping!
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This week's background
Background reading for this week can be found in Field et al, Discovering Statistics Using R (2011), Chapter 17 -
Exploratory Factor Analysis.

There is a Datacamp course, Factor Analysis in R. Note: it's a little tough in places - don't be discouraged! It's
good practice and covers some topics we didn't cover today!
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