Factor Analysis
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Psychometrics

Many of the things we want to measure are constructs that are not directly measurable. e.g. IQ, anxiety, risk

"A group of blind men heard that a strange animal,
T . called an elephant, had been brought to the town,
| - but none of them were aware of its shape and form.
| Out of curiosity, they said: "We must inspect and
know it by touch, of which we are capable"."
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Psychometrics

Many of the things we want to measure are constructs that are not directly measurable. e.g. IQ, anxiety, risk

We can try to capture different aspects of latent
. variables.

HE ~ For example, we might ask a variety of different
questions as with standard scales and
questionnaires like

e HEXACO
e Historical Clinical Risk Management-20 (HCR-20)
e Patient Health Questionnaire 9 (PHQ-9)
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The HEXACO personality measures

The HEXACO scale measures personality using 60 or 100 item questionnaires.
These questionnaires supposedly breaks personality down into six different factors:

e Honesty-Humility

e Emotionality

e eXtraversion [sic]

e Agreeableness

e Conscientiousness

* Openness to Experience
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Example HEXACO items

1 = strongly disagree 2 = disagree 3 =neutral 4 =agree 5 =strongly agree
1 I would be quite bored by a visit to an art gallery.
2 - I plan ahead and organize things, to avoid scrambling at the last minute.
3 - I rarely hold a grudge, even against people who have badly wronged me.
4 - I feel reasonably satisfied with myself overall.
5 - I would feel afraid if T had to travel in bad weather conditions.
6 - I wouldn't use flattery to get a raise or promotion at work, even if I thought it would succeed.
7 - I'm interested in learning about the history and politics of other countries.
8 - I often push myself very hard when trying to achieve a goal.
9 - People sometimes tell me that I am too critical of others.

10 I rarely express my opinions in group meetings.
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Performing factor and component analysis




Graphical representation of factor analysis

Each axis is a dimension relating to an underlying
construct.

In this example, based on the HEXACO scale, the x-

axis represents the Honesty-Humility dimension,
while the y-axis represents the Emotionality

dimension.

7/54



Graphical representation of factor analysis

Each dot represents the score on an individual item.

The points that cluster together are correlated and
are measuring part of the same underlying
dimension.

We can shift the axes to pass through these points.
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Factor loadings

Items that measure the Emotionality factor cluster -
or load - high on the y-axis.

Items that measure the Honesty-Humility factor load
high on the x-axis.
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Factor loadings

The distance of an item from zero on a particular
dimension indicates how heavily the item /oads on
that dimension.

Items that measure the Emotionality factor cluster -
or load - high on the y-axis.

Items that measure the Honesty-Humility factor load
high on the x-axis.
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Factor loadings

The items that load on the Honesty-Humility axis are
close to the centre of the y-axis, but distant from
zero on the x-axis.
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Factor loadings

The items that load on the Honesty-Humility axis are
close to the centre of the y-axis, but distant from
zero on the x-axis.

The items that load on the Emotionality factor are
close to the centre of the x-axis, but distant from
zero on the y-axis.
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Factor loadings

Let's add a third set of items, a set of items that
correlate with each other but not with either
existing cluster.

These clearly load negatively on both our existing
factors, but we may need another factor to
characterise them properly.
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Factor loadings

Let's add a third set of items, a set of items that
correlate with each other but not with either
existing cluster.

These clearly load negatively on both our existing
factors, but we may need another factor to
characterise them properly.

For each distinct factor, we need an additional
dimension.
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Preparing for factor analysis




The R-matrix

Correlations are at the heart of how we understand
which of our questionnaire items measure the same
factors.

There are 60-item and 100-item versions of the
HEXACO.

Here we take a look a small subset of those items.

We have two clusters of items that correlate with with
each other but not with the items in the other cluster.
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The identity matrix

The matrix on the right is the identity matrix - this is what the correlation matrix would be like without structure.
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Checking the R-matrix

We need to know whether there is sufficient correlative structure in the datal!

The Bartlett test - run using the check_sphericity_bartlett() function from parameters - is used to check
whether the correlation matrix significantly differs from the identity matrix.

check_sphericity_bartlett(hexaco_subset)

## # Test of Sphericity
H#

## Bartlett's test of sphericity suggests that there is sufficient significant correlation
in the data for factor analysis (Chisq(15) = 187.45, p < .001).
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Checking sampling adequacy

We also need to know if there is enough variability in the data.

The Kaiser-Meyer-Olkin statistic measures the degree to which each variable in the data can be predicted from
the other variables.

KMO ranges from 0 to 1; values above .7 are generally considered acceptable.

check_kmo (hexaco_only)

## The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data seems
appropriate for factor analysis (KMO = 0.77).
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Checking for sufficient factor structure

The check_factorstructure() function from parameters does both of these at once!

check_factorstructure(hexaco_only)

## # Is the data suitable for Factor Analysis?

##

# - KMO: The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data
seems appropriate for factor analysis (KMO = 0.77).

# - Sphericity: Bartlett's test of sphericity suggests that there 1is sufficient

significant correlation in the data for factor analysis (Chisq(1770) = 7153.57, p < .001).
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How many factors do we need?




How many factors do we need?

We need to figure out how many factors we need to
break down our data.

In theory, we could have one per item.
... but that would be a lot of factors.

Here, it looks like there are at least five different
groups.
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Scree plots

Catell (1966) proposed the scree plot as a way to

choose how many factors to keep.

The y-axis shows the eigenvalue of each potential
factor, up to the maximum number possible.

scree(hexaco_only, factors =

FALSE)

Eigenwvalues of compaonents

Scree plot
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Eigenvalues

Eigenvalues tell us how much variance a particular factor explains.

Higher values mean more variance explained, and the more variance a factor explains, the more important it is.

They help us determine whether a factor is worth extracting for further analysis.

eigen(cor (hexaco_only))S$values

##
##
##
##
##
##
##
##
##
##

[1]

[7]
[13]
[19]
[25]
[31]
[37]
[43]
[49]
[55]

(OO OMOMONMONOR I o))

.6794022
.8303788
.1922544
.9119362
. 7084408
.5852278
.4697304
.3844344
.2977506
.2312924

(OO OO MORORGEE I NN

.9331351
. 7109257
.1163815
.8633100
.6727497
.5682678
.4557374
.3547073
.2890174
.2221693

(OO OO MORORORE I NN

.1642486
.6276844
.0921884
.8313116
.6619408
.5418668
.4375651
.3484113
.2725412
.2179546

(OO OMOMONMONOR I N0

.6237441
.4397559
.0615500
. 7990644
.6319305
.5317604
.4280798
.3357983
.2599978
.1937423

(OO OMOMONMOMNOROR IV

.1055095
.3272585
.9873230
. 7715206
.6145891
.5112533
.4018966
.3289566
.2595737
.1609424

(OO OMOMOMONORBORE I\

.4175969
.2604329
.9548026
. 7308254
.5917170
.4972359
.3945424
.3065944
.2436230
.1554209
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Scree plots

We look for the point of inflexion - the point at which Scree plot
the eigenvalues have (more or less) stopped . ;
decreasing much. o |
It's probably around 9 components here! 2w,
S
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Kaiser's criterion

An alternative to looking for the point of inflexion is
to keep any factor where the eigenvalue is higher
than 1 - this is called Kaiser's criterion.

This would pick out around 176 factors here.

Kaiser's criterion tends to keep too many factors.

Eigenwvalues of components

Scree plot
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Parallel analysis

Arguably the best method is Parallel Analysis,
using the fa.parallel() function.

In parallel analysis, random data is generated and
compared to the true data.

Factors above the red line should be kept. Here, it's
9, just like our "point of inflexion" rule would
suggest.

fa.parallel (hexaco_only,
fa = ”pC”)

## Parallel analysis suggests that the
number of factors = NA and the number of
components = 9

eigenwalues of principal components

Parallel Analysis Scree Plots

" —*— PC Actual Data
------ FC Simulated Data

--- PC Resampled

Data

————
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Principal Component Analysis




Principal Component Analysis

There are a number of differenct factor analysis methods available. We'll look at PCA. PCA is a dimension
reduction method.

It produces a simplified model of the data that captures the inter-relationships between variables.

To run PCA on this kind of data, we can use the principal() function from the psych package.

?principal

29 /54



Principal Component Analysis

Having decided we need nine factors, we use the principal() function to extract them from the data.

pca_hexa <- principal(hexaco_only,
nfactors = 9,
rotate = "varimax")

(Output is on the next slide!)
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pca_hexa

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Principal Components Analysis
Call: principal(r
Standardized loadings (pattern matrix) based

RC1
hexacol -0.17
hexaco2 -0.01
hexaco3 0.59
hexaco4 .15
hexaco5 0.10
hexaco6 0.14
hexaco7 -0.01
hexaco8 -0.01
hexaco9 -0.58
hexacol® -0.11
hexacoll 0.15
hexacol2 -0.05
hexacol3d 0.00
hexacol4 -0.11
hexacol5 -0.65
hexacol6 0.09
hexacol7 0.14
hexacol8 0.22
hexacol9 -0.11
hexaco20 0.05

(©)

RC2
.00
21
.06
.12
.50
.02
.06
.10
.10
.27
.16
.53
.07
.12
.01
.16
361
.03
.01
.12

RC3
.74
.02
.09
.08
.03
.06
.59
.03
.12
.09
.32
.00
.65
.19
.01
.21
.04
.05
.33
.27

ol ol oMo

RC6
.03
.10
.19
.17
.14
.64
.04
.13
.12
.66
.12
.02
.05
.06
.00
.01
.03
.46
- AL
.16

RC9
.01
.05
.15
.59
.06
.06
.06
.23
.08
.15
.02
.37
.01
.05
.10
.21
.09
.11
.19
.08

@ @ @ @ @ @ @ @

RC5
.03
.58
.06
.25
.06
.03
.14
.19
.00
.21
.14
.05
.36
.30
.14
.14
.03
.08
.05
.64

hexaco_only, nfactors = 9,

rotate = "varimax")
upon correlation matrix
RC4 RC7 RC8 h2
.09 0.04 0.05 0.59
.03 0.24 0.17 0.48
.02 0.01 0.15 0.44
.09 0.23 0.09 0.56
.08 0.03 0.01 0.30
.00 0.06 -0.24 0.49
.07 -0.03 -0.08 0.39
.20 0.61 0.06 0.53
.03 0.07 0.19 0.42
.02 0.08 -0.03 0.60
.64 0.12 0.01 0.60
.07 0.26 0.07 0.50
.14 0.21 -0.08 0.63
.01 -0.48 0.20 0.43
.05 0.24 0.07 0.52
.65 0.06 -0.13 0.58
.15 0.18 0.00 0.54
.08 0.17 0.08 0.33
.21 -0.11 0.47 0.45
.05 -0.15 0.13 0.57
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fa.diagram(pca_hexa)

Components Analysis

LJ‘.C'Fl Lol
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Factor Rotation




Factor rotation

Remember that each factor (or component!) adds an

1.0
* additional axis to this plot. Here, the items load
e highly on one particular component each.
L ]
= L]
05 But when there are many items and many
> components, the items tend to load on multiple
- .« °* W components.
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Factor rotation

Items tend to load largely on the most important

1.0
* (highest eigenvalue) components, and then a little
e bit on the smaller components.
L ]
= L]

05 We can alter how we place the axes, rotating them
> such that each individual item loads on fewer
= . ° W components!
2 00 *
E L _
£
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Factor rotation

10 There are two types of rotation:
. &
*e e Orthogonal
L

0.5 ° o Factors are forced to be uncorrelated
= i
5 . . W * Oblique
O 00 B =
© L .J o Factors are allowed to be correlated
5

05

1.07

10 05 0.0 05 1.0

Honesty-Humility
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Orthogonal rotation

In this case, the items are slightly off the original

e axes.
®e
®
»
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Orthogonal rotation

In this case, the items are slightly off the original
axes.

If we rotate the axes slightly clockwise, the items are
now back on the axes.

) Note that the angles of the axes stay orthogonal (i.e.
S . 90 degrees).
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Orthogonal rotation

The typical method of orthogonal rotation is called varimax.

principal(hexaco_only,
nfactors

##
##
##
##
##
##
##
##
##
##
##
##
##
##

9,
rotate = "varimax")

Principal Components Analysis
Call: principal(r
Standardized loadings (pattern matrix)

RC1
hexacol -0.17
hexaco2 -0.01
hexaco3 0.59
hexaco4 0.15
hexaco5 0.10
hexaco6 0.14
hexaco7 -0.01
hexaco8 -0.01
hexaco9 -0.58
hexacol® -0.11

RC2
.00
21
.06
.12
.50
.02
.06
.10
.10
.27

RC3

RC6
.03
.10
.19
.17
.14
.64
.04
.13
.12
.66

RC9
.01
.05
.15
.59
.06
.06
.06
.23
.08
.15

based
RC5
-0.03
-0.58
0.06
-0.25
-0.06
-0.03
-0.14
-0.19
0.00
0.21

hexaco_only, nfactors = 9,

rotate = "varimax")
upon correlation matrix
RC4 RC7 RC8 h2
.09 0.04 0.05 0.59
.03 0.24 0.17 0.48
.02 0.01 0.15 0.44
.09 0.23 0.09 0.56
.08 0.03 0.01 0.30
.00 0.06 -0.24 0.49
.07 -0.03 -0.08 0.39
.20 0.61 0.06 0.53
.03 0.07 0.19 0.42
.02 0.08 -0.03 0.60
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Oblique rotation

In this case, the items are displaced from the axes
® slightly differently.
®
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Oblique rotation

‘ In this case, the items are displaced from the axes
slightly differently.

Here, we allow the axes to be non-orthogonal (i.e.
oblique - not 90 degrees), which means the axes
® } correlate with each other.
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Oblique rotation

The typical method of oblique rotation is called oblimin.

principal(hexaco_only,
nfactors

##
##
##
##
##
##
##
##
##
##
##
##
##
##

9,
rotate = "oblimin")

Principal Components Analysis
Call: principal(r
Standardized loadings (pattern matrix)

TC1
hexacol -0.18
hexaco2 -0.01
hexaco3 0.57
hexaco4 0.08
hexaco5 0.09
hexaco6 0.10
hexaco7 0.01
hexaco8 -0.04
hexaco9 -0.56
hexacol® -0.05

TC2
.03
.16
.08
.13
.50
.05
.04
.03
.09
.23

0.
0.
-0.
0.
-0.
0.
CE
—8
—@l;
0.

TC3
74

(Ol ol OMO]

TC6
.07
.12
17
17
.15
)
.02
.10
.04
.67

TC5
.10
.55
.07
.21
.05
.03
.24
17
.03
.15

TC4
-0.05
-0.03
-0.12
-0.58
-0.08

0.11
0.11
-0.19
0.05
0.09

rotate = "oblimin")
based upon correlation matrix
TC7 TC9 TC8 h2
.02 0.15 0.03 0.59
.04 0.21 0.20 0.48
.01 -0.02 0.15 0.44
.03 0.20 0.08 0.56
.09 0.01 0.02 0.30
.01 0.06 -0.28 0.49
.14 -0.11 -0.06 0.39
.16 0.59 0.05 0.53
.00 0.06 0.18 0.42
.00 0.13 0.01 0.60

hexaco_only, nfactors = 9,
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Which rotation to use?

For the most part, use orthogonal rotation (i.e. Varimax).

Oblique rotation is defensible when there are a priori, theoretical reasons to believe there will be correlations
between dimensions.

principal(hexaco_only, principal(hexaco_only,
nfactors = 9, nfactors = 9,
rotate = "varimax") rotate = "oblimin")
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Factor interpretation




Final PCA

Let's finish off by looking closely at the PCA solution with nine factors and varimax rotation.

pca_hexa

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Principal Components Analysis
Call: principal(r
Standardized loadings (pattern matrix)

RC1
hexacol -0.17
hexaco2 -0.01
hexaco3 0.59
hexaco4 0.15
hexaco5 0.10
hexaco6 0.14
hexaco7 -0.01
hexaco8 -0.01
hexaco9 -0.58
hexacol® -0.11
hexacoll 0.15
hexacol2 -0.05

RC2
.00
21
.06
.12
.50
.02
.06
.10
.10
.27
.16
.53

RC3
.74
.02
.09
.08
.03
.06
.59
.03
.12
.09
.32
.00

(OOl OMO]

RC6
.03
.10
.19
17
.14
.64
.04
.13
.12
.66
.12
.02

© © O o

RCO
.01
.05
.15
.59
.06
.06
.06
.23
.08
.15
.02
.37

based
RC5
-0.03
-0.58
0.06
-0.25
-0.06
-0.03
-0.14
-0.19
0.00
0.21
0.14
-0.05

hexaco_only, nfactors = 9,

rotate = "varimax")
upon correlation matrix
RC4 RC7 RC8 h2
.09 0.04 0.05 0.59
.03 0.24 0.17 0.48
.02 0.01 0.15 0.44
.09 0.23 0.09 0.56
.08 0.03 0.01 0.30
.00 0.06 -0.24 0.49
.07 -0.03 -0.08 0.39
.20 0.61 0.06 0.53
.03 0.07 0.19 0.42
.02 0.08 -0.03 0.60
.64 0.12 0.01 0.60
07 0.26 0.07 0.50
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Final PCA

Down at the bottom of our output are statistics about the amount of variance our factors explain.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

SS loadings

Proportion
Cumulative
Proportion
Cumulative

SS loadings

Proportion
Cumulative
Proportion
Cumulative

SS loadings

Proportion
Cumulative
Proportion
Cumulative

Var

Var
Explained
Proportion

Var

Var
Explained
Proportion

Var

Var
Explained
Proportion

OO ON

RC1

4744097
.0745735
.0745735
.1486879
.1486879

RC9O

.18062363
.05301039
.31857456
.10569446
.63518797

RCS8

.93987219
.03233120
.50154376
.06446337
. 00000000

© © 0 o M

RC2

.45609263
.07426821
.14884171
.14807922
.29676714

(OO M ORI ORI

RC5

.14794568
.05246576
.37104032
.10460854
. 713979651

(OB OO RO NN

RC3

.54088899
.05901482
.20785652
.11766634
.41443348

(OO M ORI ORI

RC4

.01616898
.05026948
.42130980
.10022951
. 84002602

(OB OO ONN)

RC6

.46245860
05770764
.26556417
.11506004
.52949352

(OB OB ORONN)

RC7

.87416485
.04790275
.46921255
.09551061
.93553663
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Interpreting the output

It looks like there are 10 items that load on our first factor.

The top three are the following items from the HEXACO-60:

Item 21: People think of me as someone who has a quick temper.
Item 45: Most people tend to get angry more quickly than I do.

Item 15: People sometimes tell me that I'm too stubborn.
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Interpreting the output

In fact, the ten items are all those that correspond to Agreeableness:

Agreeableness
Forgiveness 3,27
Gentleness 9R, 33, 51
Flexibility 15R, 39, 57R
Patience 21R. 45

Note that several should be reversed, and they have negative factor loadings because we didn't actually reverse
them!
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How do individual participants score?

Once we know what our factors are, how do we convert each participant's data into something that tells us how
that participant rated for each factor?

head (pca_hexa$scores)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

RC1

.0370952
.3067772
.4223559
.4688597
.8065396
.4092487

RC5

.5199759
.4670667
.1032942
.3225573
. 7686581
. 7329438

RC2

. 714766949
07377406
.43381267
.01939403
.42209968
.41218241

RC4

.64786941
.49776904
. 19409792
.10714105
.06179528
.03392348

RC3

.0906981
.9048852
.0134896
.6466062
.6753594
.5163114

RC7

.4417465
.2658352
.6168094
.1981588
.2344637
.0618261

RC6

.4308437
.6698510
.6835562
.3991087
.9384934
.2545879

RCS8

.2530221
.8120384
.2996072
.4550324
.4208103
.5631121

RCO

. 7581765
.3186814
.2656719
.1195594
. 7880986
. 9586546
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A quick example

The factor scores can be treated as if they were any 0.41

other variable! Here I combine the Factor Scores
with the original data.

0.31
final_data <- cbind(crime, -
pca_hexa$scores) @02
ggplot(final_data, _§ EE&?E
aes(x = RC1,
fill = factor(sex, 01-
levels = c(1,
2),
labels = 0.0
c("Female", "Male")))) + 3 5 N 0 ] 5
geom_density(alpha = 0.5) + Agreeableness
scale_fill_brewer (palette = "Dark2") +
labs(x = "Agreeableness",

fill = "") +
theme_classic() +
theme(text = element_text(size = 20)) 50/54



Why would you do this?




Why use factor analysis?

1) Rather than trying to analyse many, many different items as if they are each independent from each other,
you can reduce the task down to a smaller set of factors

2) Factor analysis helps you condense the information down, while still retaining the benefit of having many
different, independent measurements of the underlying constructs.

3) During the design of questionnaires, it helps you work out which items are measuring which thing, and which
items are worth keeping!
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This week's background

Background reading for this week can be found in Field et al, Discovering Statistics Using R (2011), Chapter 17 -
Exploratory Factor Analysis.

There is a Datacamp course, Factor Analysis in R. Note: it's a little tough in places - don't be discouraged! It's
good practice and covers some topics we didn't cover today!
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