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Multiple regression is what we need with multiple
predictors.

A simple regression has one predictor...

lm(y ~ X1)

and adding predictors is easy - we use the + symbol!

lm(y ~ X1 + X2)

Multiple linear regression

a <- 2 # Our intercept term

b1 <- 0.65 # Our first regression coeffici

X1 <- rnorm(1000, 6, 1) # Our first predict

b2 <- -0.8 # Our second regression coeffici

X2 <- rnorm(1000, 3, 1) # Our second predic

err <- rnorm(1000, 0, 1) # Our error term

y <- a + b1 * X1 + b2 * X2 + err # Our resp
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Comparing three or more means with
ANOVA
The t.test() can only handle two groups.

When we have three or more groups, we need to use a One-Way Analysis of Variance (ANOVA).
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How to run ANOVA with the afex
package
Although the standard R function for ANOVA, aov(), works, it can be fiddly to use.

The afex package provides several easier methods for running ANOVA.

We'll use the aov_ez() function.

noise_aov <- aov_ez(dv = "test_score",

                    between = "noise",

                    id = "participant",

                    data = noise_test)

## Converting to factor: noise

## Contrasts set to contr.sum for the following variables: noise
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Comparing multiple means withComparing multiple means with
dependent datadependent data
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Within-subjects ANOVA
When the assumption of independence is violated - i.e. participants contribute more than one data point, and
contribute to more than one design cell - we need to use a within-subjects or repeated-measures ANOVA.

A worked example
Our researcher from last week wanted to examine the effect of noisy environments on test performance. She
recruited 150 participants and splits them into three groups who took the test with no noise, reasonably quiet
noise, or loud noise.

One problem here is the possibility that participants in each group just had different levels of ability. To get
round this, she decides to get each participant to sit three tests, each under different levels of noise. Thus, any
differences attributed to noise can't be due to test-taking ability.
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head(noise_test)

## # A tibble: 6 x 3

##   noise test_score participant

##   <chr>      <dbl>       <int>

## 1 none        6.51           1

## 2 none        6.82           2

## 3 none        9.23           3

## 4 none        6.36           4

## 5 none        8.60           5

## 6 none        8.21           6

Last time we simulated data with a
between-subjects structure:

One row per observation, which meant one
row per participant.

Within-subjects ANOVA
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This time, it's the same participants in each
condition. There's still one row per
observation, but now there are three rows
per participant - one for each observation
in each of the three conditions.

arrange(noise_test_within, participant)

## # A tibble: 150 x 3

##    noise test_score participant

##    <chr>      <dbl>       <int>

##  1 none        7.68           1

##  2 quiet       9.06           1

##  3 loud        7.01           1

##  4 none        7.78           2

##  5 quiet       9.82           2

##  6 loud        6.26           2

##  7 none        8.46           3

##  8 quiet      10.7            3

##  9 loud        7.31           3

## 10 none        7.12           4

## # ... with 140 more rows

Within-subjects ANOVA
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It looks like loud noise has a really
detrimental effect on performance; it also
looks like loud noise makes performance
more variable.

noise_test_within %>%

  group_by(noise) %>%

  summarise(variance = var(test_score))

## # A tibble: 3 x 2

##   noise variance

##   <chr>    <dbl>

## 1 loud      7.39

## 2 none      3.81

## 3 quiet     3.12

Plotting the data
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Furthermore, scores tend to be positively correlated
(albeit weakly) across tests - people who score well
in one situation tend to score well in other
situations.

##       none quiet loud

## none  1.00  0.30 0.32

## quiet 0.30  1.00 0.19

## loud  0.32  0.19 1.00

Plotting the data

noise_test_within %>%

  pivot_wider(names_from = "noise",

              values_from = "test_score") %

  select(2:4) %>% cor() %>% round(2)
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The grand mean test score is 6.45, shown
by the black line.

The total variability in our data is the sum
of the squared differences from the grand
mean - the Total Sum of Squares, .

The mean as a model (again)

SSt
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Our Model Sum of Squares -  - is the
sum of the squared differences of each
group's mean from the grand mean.

The group means are shown here using
coloured lines.

This is just the same as it is for a between-
subjects ANOVA.

But the next step is different!

The group means as a model

SSm
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Here, we need the within-participant sum
of squares - . This is the sum of
squared differences of each participant's
scores from their individual mean.

Each participant's mean is marked using a
triangle, while scores from individual
conditions are marked with points.

Within-subject variability

SSw
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The leftovers, the mean squares, and the
F-ratio
Finally, we can calculate the Residual sum of squares -  by subtracting the model sum of squares -  -
from the within-subjects sum of squares - .

We then calculate the Model Mean Square Error -  - and Residual Mean Square Error -  - the same
way as last time, using the degrees of freedom -

And we calculate the F-ratio in the same way as last time.

SSr SSm

SSw

MSm MSr

MSm =
SSm

dfm

MSr =
SSr

dfr

F =
MSm

MSr
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Between- versus within-subject ANOVA
1. The underlying computations are mostly the same, but differ in how they treat the

variability

2. Within-subject designs use within-subject variability

Within-subject variability is often much lower than between-subject variability
People function as their own controls!

3. Since the variance within-subjects is generally lower than between-subjects, within-
subject designs typically have more statistical power i.e. are more sensitive.

4. However, there is a risk of order or practice effects with within-subject designs.
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How to run a one-way within-subjectsHow to run a one-way within-subjects
ANOVAANOVA
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Within-subjects ANOVA with afex
Just like last week, we can use aov_ez() from the afex package.

Instead of passing a parameter called between, we pass one called within.

noise_within_aov <- 

  aov_ez(dv = "test_score",

         id = "participant",

         within = "noise",

         data = noise_test_within)

noise_within_aov

## 1  noise 1.81, 88.54 3.93 26.54 *** .212   <.001

## Anova Table (Type 3 tests)

## 

## Response: test_score

##   Effect          df  MSE         F  ges p.value

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG 17 / 45



The sphericity assumption
Sphericity is the equivalent to the homogeneity of variance assumption when there are three or more levels of a
repeated measures factor.

afex applies Greenhouse-Geisser correction by default - it adapts the degrees of freedom to compensate for
different variances.

noise_within_aov

## 1  noise 1.81, 88.54 3.93 26.54 *** .212   <.001

## Sphericity correction method: GG

## Anova Table (Type 3 tests)

## 

## Response: test_score

##   Effect          df  MSE         F  ges p.value

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 
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Effect size
ges in the output stands for Generalized eta-squared - 

This tells us the proportion of variance explained, similar to .

noise_within_aov

## 1  noise 1.81, 88.54 3.93 26.54 *** .212   <.001

η2
g

r2

## Anova Table (Type 3 tests)

## 

## Response: test_score

##   Effect          df  MSE         F  ges p.value

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG
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Within-subjects ANOVA
We can follow up the significant effect in the same way as last time:

pairs(emmeans(noise_within_aov, ~noise))

##  contrast     estimate    SE df t.ratio p.value

##  none - quiet    0.413 0.311 49   1.328  0.3867

##  none - loud     2.558 0.394 49   6.491  <.0001

##  quiet - loud    2.145 0.417 49   5.141  <.0001

## 

## P value adjustment: tukey method for comparing a family of 3 estimates

Performance in the quiet and no noise conditions is significantly better than performance in
the Loud noise condition, but they aren't significantly different from each other.
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Reporting the results
noise_within_aov

## Anova Table (Type 3 tests)

## 

## Response: test_score

##   Effect          df  MSE         F  ges p.value

## 1  noise 1.81, 88.54 3.93 26.54 *** .212   <.001

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG

"There was a significant effect of noise level on test scores, [F(1.81, 88.54) = 26.54, p < .001].
Test performance without noise and with quiet noise did not significantly differ (p = .5), but
both were significantly better than performance in the loud noise condition (ps < .001)."
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Comparing multiple means with multipleComparing multiple means with multiple
categorical predictorscategorical predictors
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Our researcher now wonders whether the
level of noise matters more for tests that
are hard compared to tests that are
relatively easy.

So she runs the study again, with the same
three noise conditions, but now splits the
participants into two more conditions. Half
of the participants take an easy test; the
other half take a hard test.

noise_test_mixed

## # A tibble: 300 x 4

##    noise difficulty test_score participant

##    <chr> <chr>           <dbl>       <int>

##  1 none  hard           11.9             1

##  2 none  hard            6.26            2

##  3 none  hard            0.774           3

##  4 none  hard            7.69            4

##  5 none  hard            6.27            5

##  6 none  hard            3.13            6

##  7 none  hard            4.82            7

##  8 none  hard            6.60            8

##  9 none  hard            6.93            9

## 10 none  hard            4.71           10

## # ... with 290 more rows

Factorial ANOVA
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What design does the researcher have?
Factorial designs can be purely within-subjects, purely between-subjects, or a mixture of the
two. There can be any number of factors with any number of levels.

The resulting experiment has two independent, categorical variables, and thus two factors.

The factor "test difficulty" has two levels - "easy" and "hard". It is a between-subjects factor.

The factor "noise" has three levels - "none", "quiet", and "loud". It is a within-subjects factor.

This calls for a Two-Way,  Mixed ANOVA.2 × 3
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Since each participant takes part in all three noise
conditions, there are three rows per participant.

noise_test_mixed %>%

  arrange(participant)

## # A tibble: 300 x 4

##    noise difficulty test_score participant

##    <chr> <chr>           <dbl>       <int>

##  1 none  hard           11.9             1

##  2 quiet hard            7.27            1

##  3 loud  hard            7.53            1

##  4 none  hard            6.26            2

##  5 quiet hard            4.44            2

##  6 loud  hard            5.16            2

##  7 none  hard            0.774           3

##  8 quiet hard            3.55            3

##  9 loud  hard            1.23            3

## 10 none  hard            7.69            4

But since difficulty is between-subjects, the
participant ID numbers differ across easy and hard
difficulties.

noise_test_mixed %>%

  group_by(difficulty) %>%

  slice(1:3)

## # A tibble: 6 x 4

## # Groups:   difficulty [2]

##   noise difficulty test_score participant

##   <chr> <chr>           <dbl>       <int>

## 1 none  easy            8.98           51

## 2 none  easy            6.81           52

## 3 none  easy            6.84           53

## 4 none  hard           11.9             1

## 5 none  hard            6.26            2

## 6 none  hard            0.774           3

The structure of the data
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Mixed factorial ANOVA with afex
We enter between factors using the between argument; within factors using the within
argument.

noise_aov_mixed <- aov_ez(id = "participant",

                          dv = "test_score", 

                          between = "difficulty",

                          within = "noise",

                          data = noise_test_mixed)

## Converting to factor: difficulty

## Contrasts set to contr.sum for the following variables: difficulty
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Mixed factorial ANOVA with afex
noise_aov_mixed

## 1       difficulty        1, 98 4.65 98.53 *** .344   <.001

## 2            noise 1.98, 194.13 2.15 15.08 *** .069   <.001

## 3 difficulty:noise 1.98, 194.13 2.15 13.09 *** .060   <.001

Looks like everything is significant!

## Anova Table (Type 3 tests)

## 

## Response: test_score

##             Effect           df  MSE         F  ges p.value

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG
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Here's a similar plot to the one I produced earlier,
but using afex_plot() instead of ggplot().

afex_plot(noise_aov_mixed,

          x = "noise",

          trace = "difficulty", 

          error = "between") +

  theme_classic()

## Warning: Panel(s) show a mixed within-between-design.

## Error bars do not allow comparisons across all means.

## Suppress error bars with: error = "none"

It seems pretty obvious from this plot that there's
an effect of noise when the test is hard, but not so
much when the test is easy. This is an interaction
effect.

A worked example
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Post-hoc tests
We need to follow up a significant interaction to work out, statistically, what is driving the interaction.

One way to do this is with post-hoc tests. With post-hoc tests, we compare every possible pair of means to each
other using t-tests.

First let's get all the means using emmeans().

all_means <- emmeans(noise_aov_mixed,

                     ~noise * difficulty)

all_means

##  noise difficulty emmean    SE df lower.CL upper.CL

##  none  easy         7.58 0.216 98     7.15     8.01

##  quiet easy         7.78 0.221 98     7.34     8.22

##  loud  easy         7.49 0.288 98     6.92     8.06

##  none  hard         6.25 0.216 98     5.82     6.68

##  quiet hard         5.11 0.221 98     4.67     5.55

##  loud  hard         4.08 0.288 98     3.51     4.65

## 

## Confidence level used: 0.95 29 / 45



Post-hoc tests
Then we use the pairs() function to test them all against each other.

pairs(all_means)

##  contrast                estimate    SE df t.ratio p.value

##  none easy - quiet easy   -0.2022 0.278 98  -0.728  0.9781

##  none easy - loud easy     0.0866 0.296 98   0.292  0.9997

##  none easy - none hard     1.3285 0.306 98   4.346  0.0005

##  none easy - quiet hard    2.4708 0.309 98   7.988  <.0001

##  none easy - loud hard     3.5003 0.360 98   9.731  <.0001

##  quiet easy - loud easy    0.2888 0.302 98   0.958  0.9300

##  quiet easy - none hard    1.5307 0.309 98   4.948  <.0001

##  quiet easy - quiet hard   2.6730 0.313 98   8.541  <.0001

##  quiet easy - loud hard    3.7025 0.363 98  10.204  <.0001

##  loud easy - none hard     1.2418 0.360 98   3.452  0.0104

##  loud easy - quiet hard    2.3842 0.363 98   6.571  <.0001

##  loud easy - loud hard     3.4136 0.407 98   8.395  <.0001

##  none hard - quiet hard    1.1424 0.278 98   4.112  0.0011

##  none hard - loud hard     2.1718 0.296 98   7.325  <.0001

##  quiet hard - loud hard    1.0295 0.302 98   3.413  0.0117 30 / 45



Post-hoc tests
1. Should only be used following a significant interaction.

2. Leads to a lot of comparisons - N(N-1) / 2, where N is the number of means. So it's
extremely important to correct for multiple comparisons!

Numerous methods exist; fortunately, emmeans() and pairs() handle this for us
using Tukey's Honestly Significant Difference (HSD).

3. Can be difficult to interpret, especially with more than two factors. If in doubt, look at the
plots.
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Simple effects
An alternative way is with simple effects. We can effectively run separate analyses at different levels of one of the
factors. Here I look at the means for each level of noise separately for the two levels of difficulty.

emmeans(noise_aov_mixed,

"noise",

        by = "difficulty")

## difficulty = easy:

##  noise emmean    SE df lower.CL upper.CL

##  none    7.58 0.216 98     7.15     8.01

##  quiet   7.78 0.221 98     7.34     8.22

##  loud    7.49 0.288 98     6.92     8.06

## 

## difficulty = hard:

##  noise emmean    SE df lower.CL upper.CL

##  none    6.25 0.216 98     5.82     6.68

##  quiet   5.11 0.221 98     4.67     5.55

##  loud    4.08 0.288 98     3.51     4.65

## 

## Confidence level used: 0.95 32 / 45



Simple effects
Now we run post-hoc tests separately within each level of difficulty.

pairs(emmeans(noise_aov_mixed,

"noise",

        by = "difficulty"))

## difficulty = easy:

##  contrast     estimate    SE df t.ratio p.value

##  none - quiet  -0.2022 0.278 98  -0.728  0.7477

##  none - loud    0.0866 0.296 98   0.292  0.9540

##  quiet - loud   0.2888 0.302 98   0.958  0.6054

## 

## difficulty = hard:

##  contrast     estimate    SE df t.ratio p.value

##  none - quiet   1.1424 0.278 98   4.112  0.0002

##  none - loud    2.1718 0.296 98   7.325  <.0001

##  quiet - loud   1.0295 0.302 98   3.413  0.0027

## 

## P value adjustment: tukey method for comparing a family of 3 estimates
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Simple effects
1. Often easier to interpret (especially when there are more than two factors).

2. Fewer comparisons so less stringent correction for multiple comparison, and higher
power to detect differences.

3. Not always obvious which factor to separate on. Sometimes it's easier to interpret one
way than the other! Again, use plots as a guide.
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What about the main effects?
I skipped straight to the interaction earlier. Why?

noise_aov_mixed

## 1       difficulty        1, 98 4.65 98.53 *** .344   <.001

## 2            noise 1.98, 194.13 2.15 15.08 *** .069   <.001

There are significant main effects of noise and difficulty.

## Anova Table (Type 3 tests)

## 

## Response: test_score

##             Effect           df  MSE         F  ges p.value

## 3 difficulty:noise 1.98, 194.13 2.15 13.09 *** .060   <.001

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG
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The main effect of noise
There's a significant main effect of noise. Let's look at the plot.

afex_plot(noise_aov_mixed,

          ~noise, error = "within") + theme_classic()
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The main effect of noise
As noise increases, test performance goes down.

emmeans(noise_aov_mixed, ~noise)

##  noise emmean    SE df lower.CL upper.CL

##  none    6.91 0.153 98     6.61     7.22

##  quiet   6.44 0.156 98     6.13     6.76

##  loud    5.79 0.203 98     5.38     6.19

## 

## Results are averaged over the levels of: difficulty 

## Confidence level used: 0.95
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The main effect of difficulty
Let's look at the plot for difficulty.

afex_plot(noise_aov_mixed, ~difficulty, error = "between") + theme_bw()
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The main effect of difficulty
Test performance is much higher when the test is easy than when it's hard.

emmeans(noise_aov_mixed, ~difficulty)

##  difficulty emmean    SE df lower.CL upper.CL

##  easy         7.62 0.176 98     7.27     7.97

##  hard         5.15 0.176 98     4.80     5.50

## 

## Results are averaged over the levels of: noise 

## Confidence level used: 0.95
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afex_plot(noise_aov_mixed,

          ~noise,

          trace = "difficulty") +

  theme_bw()

## Warning: Panel(s) show a mixed within-between-design.

## Error bars do not allow comparisons across all means.

## Suppress error bars with: error = "none"

There is clearly no significant effect of noise when
the test is easy, so the main effect of noise is
uninterpretable.

But there is always an effect of test difficulty, so the
main effect of test difficulty is interpretable.

Main effects are not always interpretable in the
presence of an interaction!

Are these effects meaningful?
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Reporting factorial ANOVA resultsReporting factorial ANOVA results
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Reporting factorial ANOVAs
Make sure that somewhere in your text is a description of which type of ANOVA you are
running, and exactly what factors are involved. A couple of examples:

1. We conducted a two-way repeated measures ANOVA with the factors Noise (None, Quiet,
or Loud) and Difficulty (Easy or Hard).

2. We conducted a  mixed ANOVA. The between-subjects factor was Difficulty (Easy or
Hard), while Noise was a repeated-measures factor (None, Quiet, or Loud)

2 × 3
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Reporting factorial ANOVAs

## 1       difficulty        1, 98 4.65 98.53 *** .344   <.001

There was a significant main effect of Difficulty [F(1, 98) = 98.54, p < .001], with better test performance when
the test was easy (mean = 7.62) compared to when the test was hard (mean = 5.15).

NB: since there are only two levels, no post-hoc test is necessary!

## Anova Table (Type 3 tests)

## 

## Response: test_score

##             Effect           df  MSE         F  ges p.value

## 2            noise 1.98, 194.13 2.15 15.08 *** .069   <.001

## 3 difficulty:noise 1.98, 194.13 2.15 13.09 *** .060   <.001

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG

43 / 45



Reporting factorial ANOVAs

## 2            noise 1.98, 194.13 2.15 15.08 *** .069   <.001

There was a significant main effect of noise [F(1.98, 194.13) = 15.08, p < .001]. Test scores were significantly
lower with loud noise (5.79) than with no noise (mean = 6.91; p < .001) or with quiet noise (6.44; p = .005). There
was no significant difference between the "no noise" and "quiet noise" conditions (p =.06).

## Anova Table (Type 3 tests)

## 

## Response: test_score

##             Effect           df  MSE         F  ges p.value

## 1       difficulty        1, 98 4.65 98.53 *** .344   <.001

## 3 difficulty:noise 1.98, 194.13 2.15 13.09 *** .060   <.001

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG
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Reporting factorial ANOVAs

## 3 difficulty:noise 1.98, 194.13 2.15 13.09 *** .060   <.001

Finally, there was also a significant interaction between Noise and Difficulty [F(1.98, 194.13) = 13.09, p < .001],
see Figure X. Simple main effects analysis, corrected for multiple comparisons using Tukey's HSD, found that
when test difficulty was Easy, there were no significant differences between any level of Noise (all ps > .58).
However, in the Hard condition, test performance was significantly better when there was no noise (mean =
6.25) compared to when there was either quiet (5.11; p < .001) or loud noise (4.08, p < .001). Performance was
also significantly worse for loud noise relative to quiet noise (p = .002).

## Anova Table (Type 3 tests)

## 

## Response: test_score

##             Effect           df  MSE         F  ges p.value

## 1       difficulty        1, 98 4.65 98.53 *** .344   <.001

## 2            noise 1.98, 194.13 2.15 15.08 *** .069   <.001

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## 

## Sphericity correction method: GG
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