
Introduction to R, part 2Introduction to R, part 2
Research Methods and SkillsResearch Methods and Skills

19/10/202119/10/2021

Interacting with R
The R Console

REPL: Read Evaluate Print Loop
Type stuff in, it tries to do it

2 / 52

Basic use of R
Use of R like a calculator
The R console allows you to use it like a calculator, as below:

5 + 5

[1] 10

10 - 6 * 13

[1] -68

3 / 52

Basic use of R
Creating objects to store information
You assign values to objects using <-

test_object <- 5

<- can be read as "is now", making the code above roughly mean

The object "test_object" is now 5 # Do not run!

Objects "stand-in" for their values:

test_object

[1] 5

4 / 52

Basic use of R
Creation of vectors
Vectors are simply a 1-dimensional collection of values of the same type.

E.g. We can create a numeric vector using the c() function.

c(5, 10, 3, -1, -5)

[1] 5 10 3 -1 -5

This is a one-dimensional vector of length five, since it has 5 values.

5 / 52

Basic use of R
Using functions on objects
Functions do things to objects.

Brackets after a word in these slides indicate that something is a function, e.g. c(), mean()

mean(c(5, 8, 2, 4, 5))

[1] 4.8

test_object <- c(5, 8, 2, 4, 5)
mean(test_object)

[1] 4.8

6 / 52

R ScriptsR Scripts

7 / 527 / 52

R Scripts
Scripts are a way of writing out a sequence of commands that you want R to execute.

A typical script looks something like this:

Load in required packages using library()
library(tidyverse)

Define any custom functions here (we haven't covered this!)

Now load any data you want to work on. (again, we'll cover this later!)
test_data <-
 read_csv("data/a-random-RT-file.csv") %>% # I'll explain what %>% means later
 rename(RT = `reaction times`)

The rest of the script then runs whatever analyses or plotting you want to do
ggplot(test_data,
 aes(x = RT,
 fill = viewpoint)) +
 geom_density()

8 / 52

Why is this useful?
Somebody asks you how you performed a particular analysis. In particular, they want
detailed instructions of how you created a plot, filtered out outliers or missing data, and
performed a linear regression.

Q1: How would you do that if you used SPSS?

Q2: How would you do that if you used R?

9 / 52

Let's create a script!Let's create a script!

10 / 5210 / 52

11 / 5211 / 52

12 / 5212 / 52

13 / 5213 / 52

14 / 5214 / 52

15 / 5215 / 52

16 / 5216 / 52

17 / 5217 / 52

R MarkdownR Markdown

18 / 5218 / 52

R Markdown
Literate programming is a mixture of plain text and code.

Whereas in scripts you need to use the # symbol to indicate comments, as here

This is a comment

...with R Markdown you can mix plain text and code using chunks to delineate sections of
code.

This allows you to create elaborate documents following the structure you want!

19 / 52

20 / 5220 / 52

21 / 5221 / 52

22 / 5222 / 52

23 / 5223 / 52

24 / 5224 / 52

25 / 5225 / 52

26 / 5226 / 52

27 / 5227 / 52

28 / 5228 / 52

Some very important advice
R Markdown documents are like recipes.

Every step needs to be written down.

When you press the knit button, R forgets everything and follows the instructions line-by-line.

So be thorough, and write down everything in the order you want it to happen!

(One exception: NEVER use install.packages() in a script)

29 / 52

Let's write some RMarkdown!Let's write some RMarkdown!

30 / 5230 / 52

Basic data typesBasic data types

31 / 5231 / 52

Basic data types
There are five basic data types in R:

Type Description Examples

integer Whole numbers 1, 2, 3
numeric Any real number, fractions 3.4, 2, -2.3
character Text "Hi there", "8.5", "ABC123"
logical Assertion of truth/falsity TRUE, FALSE
complex Real and imaginary numbers 0.34+5.3i

There are some additional types to be aware of, particularly factors, but we'll come back to them in a later
session.

32 / 52

Checking data types
We can use the class() function to check what type a given object is.

class(10)

[1] "numeric"

class(10L) # using L after the number turns it into an *integer*

[1] "integer"

class(TRUE)

[1] "logical"

class("Wednesday")

[1] "character"

33 / 52

Basic containersBasic containers

34 / 5234 / 52

35 / 52

Vectors
A vector is a collection of values which all have the same basic type.

A numeric vector is thus a collection of numeric values:

some_numbers <- c(5, 3, 6, 8)
some_numbers

[1] 5 3 6 8

... and a character vector is a collection of character values

char_example <- c("Monday", "Tuesday", "Wednesday", "Thursday")
char_example

[1] "Monday" "Tuesday" "Wednesday" "Thursday"

36 / 52

More about vectors
The colon (:) operator can be used to produce a sequence of numbers:

one_to_ten <- 1:10
one_to_ten

[1] 1 2 3 4 5 6 7 8 9 10

Vectors can also be given names:

one_to_four <- 1:4
names(one_to_four) <- char_example
one_to_four

Monday Tuesday Wednesday Thursday
1 2 3 4

37 / 52

Extracting values
Sometimes you only want a specific subset of a vector. For example, suppose that you only want the third value.
For this, we need the [] (square brackets) operator.

We put an index inbetween the [] operator.

char_example[3]

[1] "Wednesday"

Note that you can also supply multiple values:

char_example[2:3]

[1] "Tuesday" "Wednesday"

char_example[c(2, 4)]

[1] "Tuesday" "Thursday"

38 / 52

Extracting values
If your vector is named, you can also use the names as indices.

one_to_four

Monday Tuesday Wednesday Thursday
1 2 3 4

one_to_four["Wednesday"]

Wednesday
3

one_to_four[c("Monday", "Wednesday")]

Monday Wednesday
1 3

39 / 52

Matrices

40 / 52

Matrices
Matrices are 2-dimensional collections of values.

All values must be of the same type.

matrix(1:9, nrow = 3, ncol = 3)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

This is quite a common format. For example, each row could represent an individual participant, while each
column could represent a different numerical measure.

41 / 52

Accessing matrices
Since matrices are two-dimensional, you need to give two indices to make sure you get the value you want.
Again, you can use the [] operator.

[row, col]

Here I extract the number from the 2nd row down, 3rd column across.

test_matrix <- matrix(1:9, nrow = 3, ncol = 3)
test_matrix

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

test_matrix[2, 3]

[1] 8

42 / 52

Lists

43 / 52

Lists
Lists are a collection of objects of varying length and type.

album_list <-
 list(The_Beatles = c(
 "Sgt. Pepper",
 "The White Album",
 "Revolver",
 "Abbey Road"),
 Nirvana = c(
 "Bleach",
 "Nevermind",
 "In Utero")
)

Each element is labelled, just like a mason jar on a shelf.

Each element has different contents, just like our mason jars.

44 / 52

Lists
names(album_list)

[1] "The_Beatles" "Nirvana"

length(album_list)

[1] 2

album_list["The_Beatles"]

$The_Beatles
[1] "Sgt. Pepper" "The White Album" "Revolver" "Abbey Road"

45 / 52

Tabular data
Tabular data is also a collection of different types of data, arranged in a rectangular, tabular format. Most of the
data you encounter in psychology is in this kind of format.

In tabular data, each column contains only values of one type, and each row thus contains different types of
information about one thing.

Show 5 entries Search:

Showing 1 to 5 of 32 entries Previous 1 2 3 4 5 6 7 Next

mpg cyl disp hp drat

Mazda RX4 21 6 160 110 3.9

Mazda RX4 Wag 21 6 160 110 3.9

Datsun 710 22.8 4 108 93 3.85

Hornet 4 Drive 21.4 6 258 110 3.08

Hornet Sportabout 18.7 8 360 175 3.15

46 / 52

47 / 5247 / 52

days_of_the_week <-
 data.frame(day_name = c("Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"),
 day_number = 1:7
)

days_of_the_week

day_name day_number
1 Sunday 1
2 Monday 2
3 Tuesday 3
4 Wednesday 4
5 Thursday 5
6 Friday 6
7 Saturday 7

Creating tabular data
In R, this type of structure is called a data frame.

48 / 52

Extracting information from data frames
You can use the [] operator to extract single elements, rows, or columns:

days_of_the_week[1, 2]

[1] 1

days_of_the_week[5,]

day_name day_number
5 Thursday 5

days_of_the_week[, 1]

[1] "Sunday" "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"
[7] "Saturday"

49 / 52

Extracting information from data frames
A special operator you can use for data frame columns is the dollar sign, $

Combine the data frame's name with the column name as below:

days_of_the_week$day_name

[1] "Sunday" "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"
[7] "Saturday"

Question: what class() is this?

50 / 52

Wrapping upWrapping up

51 / 5251 / 52

This week's concepts
R Markdown - Chapter 27 of R4DS - see also https://rmarkdown.rstudio.com

vectors and lists in Chapter 20 of R4DS

Prep for next week
Next week we'll talk again about data frames and consider how to structure data.

Look at Section 2 (Wrangle) of R4DS for information on tibbles (which are essentially data
frames...).

52 / 52

https://rmarkdown.rstudio.com/

