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Null Hypothesis Significance Testing
(NHST)
Think back to our previous questions:

1. Do men and women differ in terms of their fear of crime?

2. Are people who have been a victim of crime more fearful of crime?

The basis of NHST is to phrase these questions as:

If there is only one population, how likely is it that our two samples have values this different
from each other?
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The tilde (~) symbol in R usually means "modelled
by"

FoC ~ victim_crime means FoC modelled by
victim_crime.

data = crime tells R to look in the crime data
frame for the data.

paired = FALSE tells R that this is an independent
samples test.

t.test(FoC ~ victim_crime,
       data = crime,
       paired = FALSE)

## 
##     Welch Two Sample t-test
## 
## data:  FoC by victim_crime
## t = 0.45309, df = 197.48, p-value = 0.651
## alternative hypothesis: true difference in means
## 95 percent confidence interval:
##  -0.1873001  0.2990388
## sample estimates:
##  mean in group no mean in group yes 
##          2.463636          2.407767

Performing t-tests in R
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Correlation and statistical relationshipsCorrelation and statistical relationships
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Correlation
Correlation measures the strength and direction of an association between two continuous
variables.
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Correlation
How related are the variables in the Fear of Crime dataset?

head(crime)

## # A tibble: 6 x 15
##   Participant sex     age victim_crime     H     E     X     A     C     O    SA    TA
##   <chr>       <chr> <dbl> <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 R_01TjXgC1~ male     55 yes            3.7   3     3.4   3.9   3.2   3.6  1.15  1.55
## 2 R_0dN5YeUL~ fema~    20 no             2.5   3.1   2.5   2.4   2.2   3.1  2.05  2.95
## 3 R_0DPiPYWh~ male     57 yes            2.6   3.1   3.3   3.1   4.3   2.8  2     2.6 
## 4 R_0f7bSsH6~ male     19 no             3.5   1.8   3.3   3.4   2.1   2.7  1.55  2.1 
## 5 R_0rov2RoS~ fema~    20 no             3.3   3.4   3.9   3.2   2.8   3.9  1.3   1.8 
## 6 R_0wioqGER~ fema~    20 no             2.6   2.6   3     2.6   2.9   3.4  2.55  1.5 
## # ... with 3 more variables: OHQ <dbl>, FoC <dbl>, Foc2 <dbl>
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Let's look at the relationship between Emotionality
(E) and Fear of Crime (FoC).

ggplot(crime,
       aes(x = E,
           y = FoC)) + 
  geom_jitter() + 
  theme_classic(base_size = 20) +
  labs(x = "Emotionality",
       y = "Fear of Crime")

Correlation

7 / 44



How do we quantify the relationship
between these variables?

We need to look at how much they vary
together.

The plot shows the Emotionality values of
the first ten participants.

The line across the middle is the mean of
those values - 2.9.

Correlation and covariance
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As you can see, the values don't lie directly on the
mean, but are spread around it.

To quantify how much the values vary from the
mean, we can calculate the variance.

Here's the scary looking formula for the variance:

And here's the not-so-scary R function:

var(x)

The mean and the variance

σ2 =
∑(x − x̄)2

N − 1
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Now let's look at the same plot for Fear of
Crime (FoC).

Again, these points and labels are
individual ratings of Fear of Crime.

The line across the middle shows the mean,
which is 2.22.

Correlation and covariance
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Now let's look at these previous two plots as
differences from their respective means.

What we want to now is to what extent the values
vary together. I.e. as one goes up, does the other?

This is covariance.

Here's the scary formula:

Here's the not-so-scary R function:

cov(x, y)

Correlation and covariance

cov(x, y) =
∑((x − x̄)(y − ȳ))

N − 1
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Covariance gives us a measure of how much two
variables vary together.

But the numbers it gives us can be hard to interpret
when the variables are on very different scales.

So we rescale the covariance using the standard
deviations of each variable.

This gives us the correlation coefficient, or r.

cor(crime$E, crime$FoC)

## [1] 0.369891

## `geom_smooth()` using formula 'y ~ x'

Correlation and covariance

corr(x, y) = r =
cov(x, y)

σxσy
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Pearson's product-moment correlation
The cor.test() function can be used to test the significance of a correlation.

cor.test(crime$E, crime$FoC,
         method = "pearson")

## t = 6.8843, df = 299, p-value = 3.421e-11

##  0.2680476 0.4635586

## 0.369891

## 
##     Pearson's product-moment correlation
## 
## data:  crime$E and crime$FoC

## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## sample estimates:
##      cor 
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Curved or non-linear relationships
If your data look like this:

...forget about correlation.
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...but if your data look like this: 

...there is some hope!

Spearman's rank correlation is used to measure
monotonicity, and is the non-parametric equivalent
to Pearson's correlation.

The data is converted to ranks, and then correlated.

cor.test(X, Y,
         method = "spearman")

## S = 22358, p-value < 2.2e-16

## 0.8658386

Curved or non-linear relationships

## 
##     Spearman's rank correlation rho
## 
## data:  X and Y

## alternative hypothesis: true rho is not equal to
## sample estimates:
##       rho 

15 / 44



Correlation is not causation
https://www.spuriouscorrelations.com
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Reporting a correlation
Reporting a correlation is pretty straightforward. Only the correlation coefficient and p-value
are typically required. e.g.

"There was a significant positive correlation between emotionality and fear of crime, r = .37,
p < .001."

However, it's best to also specify which type of correlation you used (e.g. Pearson's or
Spearman's); and a scatterplot showing the relationship should almost always be shown.
Typically, the degrees of freedom or number of observations should also be given, e.g. r(299)
= .37, p < .001, or r = .37, p < .001, N = 301.

Note that r is considered a measure of effect size. An r of .1 is considered a small effect, while
an r of .8 is considered a large effect.
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Linear regressionLinear regression
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Correlation quantifies the strength and direction of
an association between two continuous variables.

But what if we want to predict the values of one
variable from those of another?

For example, as Emotionality increases, how much
does Fear of Crime change?

ggplot(crime, 
       aes(x = E, y = FoC)) +
  geom_jitter() +
  stat_smooth(method = "lm", se = FALSE) +
  theme_classic(base_size = 22) +
  labs(x = "Emotionality",
       y = "Fear of crime")

## `geom_smooth()` using formula 'y ~ x'

Correlation, regression and prediction
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The line added to this scatterplot is the line
of best fit.

It's the straight line that gets closest to
going through all of the points on the plot.

But how do we work out where the line
should be?

Linear regression
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The line of best fit
The line represents the predicted value of y at each value of x.

The prediction is made using the following formula:

a is the intercept - the point where the line would cross the y-axis when the value of the x-axis is 0.

b is the slope - the steepness and direction of the line.

The line of best fit can be found by adjusting the intercept and slope to minimise the sum of squared residuals.

Line of best fit demo

y = a + bX
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Let's try using the lm() function to predict Fear of
Crime (FoC) from Emotionality (E).

foc_by_E <- lm(FoC ~ E, data = crime)
foc_by_E

## Coefficients:
## (Intercept)            E  
##      0.6492       0.5475

These are the intercept and slope of the regression
line on the right.

## `geom_smooth()` using formula 'y ~ x'

Fear of crime predicted by emotionality

## 
## Call:
## lm(formula = FoC ~ E, data = crime)
## 
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Is this a good model of Fear of crime?
summary(foc_by_E)

##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.64918    0.26621   2.439   0.0153 *  
## E            0.54746    0.07952   6.884 3.42e-11 ***

## Residual standard error: 0.9278 on 299 degrees of freedom
## Multiple R-squared:  0.1368,    Adjusted R-squared:  0.1339 
## F-statistic: 47.39 on 1 and 299 DF,  p-value: 3.421e-11

## 
## Call:
## lm(formula = FoC ~ E, data = crime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.87698 -0.72952 -0.03902  0.70844  2.76319 
## 
## Coefficients:

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
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Fear of crime predicted by emotionality
Let's focus on the coefficients.

summary(foc_by_E)$coefficients

##              Estimate Std. Error  t value     Pr(>|t|)
## (Intercept) 0.6491774 0.26621482 2.438547 1.532835e-02
## E           0.5474598 0.07952319 6.884279 3.421376e-11

Estimate is the coefficient of each predictor; Std. Error is an estimate of the accuracy of that coefficient.

The significance of each predictor is tested using a t-test; t value is the t statistic, and the Pr(>|t|) column is the
p-value.

Thus, Emotionality is a significant predictor of Fear of Crime.

Since its coefficient is positive, Fear of Crime increases as Emotionality increases.
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Again, the regression line is described by the
formula . So we can fill that out with our
model coefficients as follows:

Fear of crime = 0.65 + 0.55 * 

 is the value of the predictor.

The intercept is now the value of  when the value of
the predictor is zero.

The coefficient for the predictor is the amount that 
increases for each 1 unit increase in the predictor.

## `geom_smooth()` using formula 'y ~ x'

Fear of crime predicted by emotionality

y = a + bX

X

X

y

y
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Assessing model significanceAssessing model significance
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Is this a good model?
summary(foc_by_E)

## Residual standard error: 0.9278 on 299 degrees of freedom
## Multiple R-squared:  0.1368,    Adjusted R-squared:  0.1339 
## F-statistic: 47.39 on 1 and 299 DF,  p-value: 3.421e-11

## 
## Call:
## lm(formula = FoC ~ E, data = crime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.87698 -0.72952 -0.03902  0.70844  2.76319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.64918    0.26621   2.439   0.0153 *  
## E            0.54746    0.07952   6.884 3.42e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
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First, let's create a linear model that simply finds the
mean using the lm() function.

## Coefficients:
## (Intercept)  
##       2.445

Here the Intercept is equal to the mean of FoC.

mean(crime$FoC)

## [1] 2.444518

In the formula , a is the Intercept.

So our prediction for the value of y is . 

The mean as a model

intercept_only <- lm(FoC ~ 1, data = crime)
intercept_only

## 
## Call:
## lm(formula = FoC ~ 1, data = crime)
## 

y = a + bX

y = 2.44
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The mean as a model
summary(intercept_only)

##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.44452    0.05746   42.54   <2e-16 ***

## Residual standard error: 0.9969 on 300 degrees of freedom

## 
## Call:
## lm(formula = FoC ~ 1, data = crime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.44452 -0.84452 -0.04452  0.55548  2.55548 
## 
## Coefficients:

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
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Model comparison
We can compare models using the anova() function.

anova(intercept_only, foc_by_E)

## Analysis of Variance Table
## 
## Model 1: FoC ~ 1
## Model 2: FoC ~ E
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    300 298.16                                  
## 2    299 257.37  1    40.795 47.393 3.421e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(foc_by_E)$fstatistic

##    value    numdf    dendf 
##  47.3933   1.0000 299.0000
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At least it's better than the mean!
summary(foc_by_E)

## F-statistic: 47.39 on 1 and 299 DF,  p-value: 3.421e-11

## 
## Call:
## lm(formula = FoC ~ E, data = crime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.87698 -0.72952 -0.03902  0.70844  2.76319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.64918    0.26621   2.439   0.0153 *  
## E            0.54746    0.07952   6.884 3.42e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9278 on 299 degrees of freedom
## Multiple R-squared:  0.1368,    Adjusted R-squared:  0.1339 
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Assessing model fitAssessing model fit
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How much does Y does X explain?
summary(foc_by_E)

## Multiple R-squared:  0.1368,    Adjusted R-squared:  0.1339 

## 
## Call:
## lm(formula = FoC ~ E, data = crime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.87698 -0.72952 -0.03902  0.70844  2.76319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.64918    0.26621   2.439   0.0153 *  
## E            0.54746    0.07952   6.884 3.42e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9278 on 299 degrees of freedom

## F-statistic: 47.39 on 1 and 299 DF,  p-value: 3.421e-11 33 / 44



R-squared (  ) is a measure of model fit.
Specifically, it's the proportion of explained
variance in the data.

We previously looked at the variance
around the mean.

After linear regression, we look at how
much reality differs from the model
predictions - the residual error.

Model fit

R2

34 / 44



To work out how well our model fits, we
first need to know how much total variation
there is in the data.

For that, we sum the squared differences of
the values of the dependent variable 
from the mean of the dependent variable 
- the total sum of squares, :

Model fit

y

ȳ

SSt

SSt = ∑(y − ȳ)2
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Why square the differences?

1. Negative values become positive.

2. Values that are further away from the
mean often get even further away.

This prevents "errors" from cancelling out,
and effectively penalises values that are far
away from the mean.

Squared differences
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We then calculate the sum of the squared
differences of the values of the dependent
variable (  ) from the model predictions -
the sum of the squared residuals, :

Model fit

y

SSr

SSr = ∑(y − ŷ)2
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Model fit
Finally, we calculate model sum of squares -  - as the difference between the total sum of
squares and the residual sum of squares. This tells us, roughly, how much better our model is
than just using the mean:

R-squared (  ) can then be calculated by dividing the model sum of squares by the total
sum of squares:

This yields the percentage of variance explained by the model.

This is a long-winded way of saying: Higher  means more explained variance, and thus, a
better fitting model.

SSm

SSm = SSt − SSr

R2

R2 =
SSm

SSt

R2
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Model fit
Thankfully, R does all these calculations for us!

summary(foc_by_E)$r.squared

## [1] 0.1368193

Our simple regression model of the effect of Emotionality on Fear of Crime explained ~ 14%
of the variance.

What's left?

1. Other variables?

2. Measurement error?

39 / 44



Reporting simple regressionReporting simple regression
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Example of reporting a simple regression
model
"Simple linear regression was used to investigate the relationship between emotionality and
fear of crime. A significant regression equation was found that explained 14% of the
variance,  = .14, F(1, 299) = 47.39, p < .001. Fear of crime increased significantly with
increases in Emotionality,  = 0.55, t(299) = 6.884, p < .001."

R2

b
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Nicely formatted tables using sjPlot
library(sjPlot)
tab_model(foc_by_E,
          show.std = TRUE,
          title = "Table 1: Linear regression model",
          pred.labels = c("Intercept", "Emotionality"),
          dv.labels = "Fear of Crime")

Table 1: Linear regression model

 Fear of Crime

Predictors Estimates std. Beta CI standardized CI p

Intercept 0.65 0.00 0.13 – 1.17 -0.11 – 0.11 0.015

Emotionality 0.55 0.37 0.39 – 0.70 0.26 – 0.48 <0.001

Observations 301

R2 / R2 adjusted 0.137 / 0.134
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Next week
Next week we'll continue with regression, looking at multiple predictors.

We'll also begin with one-way ANOVA for comparison of multiple means.

Reading
Chapter 10 - Comparing Several Means - ANOVA (GLM 1)
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Additional support
Maths & Stats Help (AKA MASH) are a service offered by the University, based over in the library.

They offer support to both undergraduate and postgraduate students. You'll find their website at

https://guides.library.lincoln.ac.uk/mash

Note that while their website is mostly about other software, they do support R!

Or join the MS Teams group, use the discussion board, or drop me an email!

44 / 44

https://guides.library.lincoln.ac.uk/mash

