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Different correlations
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Correlation summary
Correlation coefficients are bound in a range from -1 to 1.

Negative coefficients mean that as one variable increases, the other decreases.

Positive coefficients mean that as one variable increases, the other also increases.
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Correlation quantifies the strength and direction of
an association between two continuous variables.

But what if we want to predict the values of one
variable from those of another?

For example, as Emotionality increases, how much
does Fear of Crime change?

ggplot(crime, 
       aes(x = E, y = FoC)) +
  geom_point() +
  stat_smooth(method = "lm", se = FALSE) +
  theme_classic() +
  labs(x = "Emotionality",
       y = "Fear of crime")

## `geom_smooth()` using formula 'y ~ x'

Correlation, regression and prediction

4 / 54



The line added to this scatterplot is the line of best
fit.

A line like this can be described by two parameters -
the intercept and the slope.

The intercept is where the line crosses the y-axis.

The slope is the steepness of the line.

Given these parameters, we can predict the value of
y - the dependent variable - at each value of x - the
independent, predictor variable - using the
following formula:

Simple linear regression

y = a + bX
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Multiple linear regressionMultiple linear regression
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## # A tibble: 6 x 5
##   participant    IQ   age mem_span read_ab
##         <dbl> <dbl> <dbl>    <dbl>   <dbl>
## 1           1    93   7.3      4.2    7.27
## 2           2    93   5.4      3.8    5.29
## 3           3    97   7.3      4.7    7.83
## 4           4    89   4        3.4    6.22
## 5           5    91   5.8      3.8    6.62
## 6           6    95   7.8      4.4    7.02

This data is from a study investigating
whether children's reading ability can be
predicted from their working memory
capacity.

Predicting children's reading ability
child_data <- read_csv("data/child_data.csv
head(child_data)
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As a starting point, we look at a plot of the
relationship between memory span and reading
ability, which suggests a positive relationship
between the two variables.

ggplot(child_data, 
       aes(x = mem_span, 
           y = read_ab)) +
  geom_point() + 
  stat_smooth(method = "lm")

## `geom_smooth()` using formula 'y ~ x'

Predicting children's reading ability

8 / 54



Simple linear regression
simple_model <- lm(read_ab ~ mem_span, data = child_data)
summary(simple_model)

## mem_span      1.2283     0.1826   6.726 1.17e-09 ***

## F-statistic: 45.24 on 1 and 98 DF,  p-value: 1.172e-09

## 
## Call:
## lm(formula = read_ab ~ mem_span, data = child_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8492 -0.5742  0.1536  0.5252  1.4998 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.2356     0.7580   1.630    0.106    

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7198 on 98 degrees of freedom
## Multiple R-squared:  0.3158,    Adjusted R-squared:  0.3089 
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Simple vs multiple regression
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Simple vs multiple regression
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Multiple linear regression deals with multiple
predictors.

The bX in our regression equation - 
- can be expanded. For example, with two
predictors, our equation would be:

## `geom_smooth()` using formula 'y ~ x'

Expanding our equation

a <- 2 # Our intercept term
b1 <- 0.65 # Our first regression coeffici
X1 <- rnorm(1000, 6, 1) # Our first predict
b2 <- -0.8 # Our second regression coeffici
X2 <- rnorm(1000, 3, 1) # Our second predic
err <- rnorm(1000, 0, 1) # Our error term
y <- a + b1 * X1 +  b2 * X2 + err # Our res

y = a + bX + ε

y = a0 + b1 × X1 + b2 × X2 + ε
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Multiple linear regression
full_model <- lm(read_ab ~ mem_span + age + IQ, data = child_data)
summary(full_model)

## mem_span     0.64429    0.29462   2.187  0.03118 * 
## age          0.30835    0.09833   3.136  0.00228 **
## IQ          -0.01217    0.01704  -0.714  0.47666   

## 
## Call:
## lm(formula = read_ab ~ mem_span + age + IQ, data = child_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.31874 -0.50709  0.03617  0.49949  1.25350 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  2.96025    1.45449   2.035  0.04458 * 

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6703 on 96 degrees of freedom
## Multiple R-squared:  0.4189,    Adjusted R-squared:  0.4007 13 / 54



Is the more complex model better?
We can explicitly compare models using the anova() function.

anova(simple_model, full_model)

## 2     96 43.133  2    7.6471 8.5101 0.0003959 ***

## Analysis of Variance Table
## 
## Model 1: read_ab ~ mem_span
## Model 2: read_ab ~ mem_span + age + IQ
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1     98 50.780                                  

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Comparing regression models
An alternative way to compare models is using the Akaike Information Criterion.

AIC(simple_model)

## [1] 222.0207

AIC(full_model)

## [1] 209.6989

AIC penalizes model complexity. A complex model that explains as much variance as a simple model is
considered worse.

Lower is better!
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Comparing predictors
The relative size of a predictor's effect can't (always) be judged from their coefficients, since
the variables can be on different scales.

full_model$coefficients

## (Intercept)    mem_span         age          IQ 
##  2.96025254  0.64428763  0.30834521 -0.01217206

## # A tibble: 4 x 4
##   variable   min    max    sd
##   <chr>    <dbl>  <dbl> <dbl>
## 1 age       4      8    1.14 
## 2 IQ       89    108    4.83 
## 3 mem_span  3.4    5.1  0.396
## 4 read_ab   4.42   8.03 0.866
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Standardizing variables
We can standardize our variables to put them on the same scale.

The scale() function mean-centres and scales variables: it subtracts the mean and divides by the standard
deviation.

## Warning: attributes are not identical across measure variables;
## they will be dropped
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summary(lm(read_ab ~ mem_span + age + IQ,
           data = as.data.frame(scale(child_data))))

## 
## Call:
## lm(formula = read_ab ~ mem_span + age + IQ, data = as.data.frame(scale(child_data)))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.52302 -0.58564  0.04177  0.57687  1.44768 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -2.703e-16  7.741e-02   0.000  1.00000   
## mem_span     2.948e-01  1.348e-01   2.187  0.03118 * 
## age          4.043e-01  1.289e-01   3.136  0.00228 **
## IQ          -6.795e-02  9.510e-02  -0.714  0.47666   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7741 on 96 degrees of freedom
## Multiple R-squared:  0.4189,    Adjusted R-squared:  0.4007 
## F-statistic: 23.07 on 3 and 96 DF,  p-value: 2.503e-11
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Standardized coefficients
These coefficients now represent the change in the dependent variable from a 1 standard deviation change
from the independent variable's mean.

sjPlot's tab_model() function can also do this for us:

tab_model(full_model, show.std = TRUE)

 read_ab
Predictors Estimates std. Beta CI standardized CI p

(Intercept) 2.96 -0.00 0.07 – 5.85 -0.15 – 0.15 0.045

mem span 0.64 0.29 0.06 – 1.23 0.03 – 0.56 0.031

age 0.31 0.40 0.11 – 0.50 0.15 – 0.66 0.002

IQ -0.01 -0.07 -0.05 – 0.02 -0.26 – 0.12 0.477
Observations 100
R  / R  adjusted 0.419 / 0.4012 2
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How to decide on your modelHow to decide on your model
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Which predictors should you include?
If we look back at the Fear of Crime dataset, there are many potential predictors you could include.

head(crime)

## # A tibble: 6 x 15
##   Participant    sex     age victim_crime     H     E     X     A     C     O    SA    TA   OHQ  
##   <chr>          <chr> <dbl> <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 R_01TjXgC191r~ male     55 yes            3.7   3     3.4   3.9   3.2   3.6  1.15  1.55  3.41  
## 2 R_0dN5YeULcym~ fema~    20 no             2.5   3.1   2.5   2.4   2.2   3.1  2.05  2.95  2.38  
## 3 R_0DPiPYWhncW~ male     57 yes            2.6   3.1   3.3   3.1   4.3   2.8  2     2.6   3     
## 4 R_0f7bSsH6Up0~ male     19 no             3.5   1.8   3.3   3.4   2.1   2.7  1.55  2.1   3.48  
## 5 R_0rov2RoSkPE~ fema~    20 no             3.3   3.4   3.9   3.2   2.8   3.9  1.3   1.8   3.59  
## 6 R_0wioqGERxEl~ fema~    20 no             2.6   2.6   3     2.6   2.9   3.4  2.55  1.5   3.76  
## # ... with 1 more variable: Foc2 <dbl>
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Which predictors should you include?
How do we decide which are important and which to include?

Theory-driven methods, which can include:

Including predictors you have manipulated (e.g. in an experiment)
Including predictors that are capture the
Including predictors that are known to influence the dependent variable

Data-driven methods, which can include:

running various models and choosing the "best" one based on model-fit
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Which predictors should you include?
There are several different common methods of selecting the "best" model.

Method Meaning

Hierarchical
regression

Variables entered in the order of their known or theoretical importance; known variables are
added first, then additional predictors are added and the model fits compared to see which
predictors improve model fit.

Forced
entry All predictors are entered at once.

Stepwise
Predictors are added (forwards, starting with no predictors) or removed (backwards, starting
with all predictors) sequentially. Can be performed using step(). Please use backwards if you
must use stepwise.

(see Discovering Statistics using R, section 7.6.4, pages 263-266)
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Linear regression assumptionsLinear regression assumptions
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Assumptions of linear regression
Like the t-test and other parametric statistical procedures, linear regression has assumptions.

Assumption Description Comment

Independence Each datapoint should be independent from the others
No repeated
measures (for those,
you need linear
mixed models...)

Normally
distributed errors

The residuals should be approximately normally distributed around
zero. Note that this is often confused with the need for the data to
be normally distributed, but it's what's left over from the model
that's important!

Best assessed using
plots (e.g. plot())

Homoscedasticity
The variance at each level of the predictor should be approximately
the same (i.e. the residuals should be spread around zero by the
same amount)

Best assessed using
plots (e.g. plot())

Linearity The relationship between the outcome variable and the predictors
should be approximately linear

Use polynomial
predictors - check
the poly() function

See Discovering Statistics Using R, section 7.7.2.1 for more details.
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Checking assumptions
library(performance)
check_model(full_model)
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Normality of residuals
plot(check_normality(full_model))

## OK: residuals appear as normally distributed (p = 0.060).
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Normality of residuals
plot(check_normality(full_model), type = "qq")

## OK: residuals appear as normally distributed (p = 0.060).
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Checking for outliers
plot(check_outliers(full_model))
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Heteroscedasticity
plot(check_heteroscedasticity(full_model))

## OK: Error variance appears to be homoscedastic (p = 0.331).
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Multicollinearity
A potential issue with multiple predictors is that they may be correlated with each other.

Collinearity is a correlation between two predictors; multicollinearity is correlation between two or more
predictors.

Multicollinearity makes it harder to evaluate the individual contribution of a predictor to a model: it increases
the estimated variability of correlated predictors.

cor(child_data[, c("IQ", "age", "mem_span")])

##                  IQ        age  mem_span
## IQ        1.0000000 -0.1158099 0.3120912
## age      -0.1158099  1.0000000 0.7134009
## mem_span  0.3120912  0.7134009 1.0000000
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plot(check_collinearity(full_model))

Graham, 2003. CONFRONTING MULTICOLLINEARITY
IN ECOLOGICAL MULTIPLE REGRESSION

Multicollinearity
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Reporting results
tab_model(full_model, show.std = TRUE)

 read_ab
Predictors Estimates std. Beta CI standardized CI p

(Intercept) 2.96 -0.00 0.07 – 5.85 -0.15 – 0.15 0.045

mem span 0.64 0.29 0.06 – 1.23 0.03 – 0.56 0.031

age 0.31 0.40 0.11 – 0.50 0.15 – 0.66 0.002

IQ -0.01 -0.07 -0.05 – 0.02 -0.26 – 0.12 0.477
Observations 100
R  / R  adjusted 0.419 / 0.401

Tables can be particularly useful with multiple regression - especially with a lot of predictors.

2 2
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Comparing multiple means withComparing multiple means with
categorical predictorscategorical predictors
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Comparing the means of two groups
Previously, we saw how to use t.test() to compare the means of two groups.

t.test(FoC ~ sex, data = crime, var.equal = TRUE)

## 
##     Two Sample t-test
## 
## data:  FoC by sex
## t = 4.7664, df = 299, p-value = 2.932e-06
## alternative hypothesis: true difference in means between group female and group male is not equal
## 95 percent confidence interval:
##  0.3753039 0.9031487
## sample estimates:
## mean in group female   mean in group male 
##             2.584681             1.945455
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Comparing three or more means with
ANOVA
The t.test() can only handle two groups.

When we have three or more groups, we need to use a One-Way Analysis of Variance (ANOVA).
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How does ANOVA work?
With a t-test, we typically ask the question "Is the difference between these two means significantly different
from zero?"

With an ANOVA, we ask the question "Are any of these means different from each other?"

Another way to phrase this is "Do any of these means differ from the grand mean?"

μ1 ≠ μ2

μ1 ≠ μ2 ≠ μ3. . .
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A researcher wants to examine the effect of noisy
environments on test performance. She recruits 150
participants and splits them into three groups.

One group performs the test without any
environmental noise. A second group performs the
test with fairly quiet noise. A third group performs
the test with loud noise. The dependent variable is
their score (out of 10) on the test.

noise_test <- 
  gather(tibble(none = rnorm(50, 8, 1),
                quiet = rnorm(50, 7, 1),
                loud = rnorm(50, 5, 1)),
         noise, test_score) %>%
  mutate(participant = 1:150)

The (grand) mean and the variance
The grand mean is the mean across all conditions.

A worked example
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noise_test

## # A tibble: 150 x 3
##    noise test_score participant
##    <chr>      <dbl>       <int>
##  1 none        6.97           1
##  2 none        6.63           2
##  3 none        8.10           3
##  4 none        8.35           4
##  5 none        7.14           5
##  6 none        7.26           6
##  7 none        8.34           7
##  8 none        9.00           8
##  9 none        6.33           9
## 10 none        8.48          10
## # ... with 140 more rows

One column per variable!

One column - noise - is the categorical predictor
variable that tells which group each participant was
in.

One column - test_score - is the dependent variable.

The final column - participant - is a (unique - each
participant always has the same identifier)
participant identifier.

How the data is structured
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The grand mean test score is 6.54, shown by the
black line.

The total variability in our data is the sum of the
squared differences from the grand mean - the
Total Sum of Squares, .

The mean as a model (again)
We went through this in detail last time, but here's how it applies here.

The simplest model of this data is to use the grand mean across all conditions.

SSt
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Our Model Sum of Squares -  - is the sum of the
squared differences of each group's mean from the
grand mean.

The group means are shown here using coloured
lines.

The final quantity, the Residual Sum of Squares - 
 is the sum of the squared differences of each

individual observation from the mean of the group
to which it belongs.

The group means as a model
The model we're interested in is the means as a function of group.

SSm

SSr
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Degrees of freedom
We now have measures of the total amount of variability explained by the data, the total
amount explained by our model, and the amount left over by our model.

However, these numbers are biased because different amounts of values went into their
calculation - 3 were used to calculate the , while many more were used to calculate 
and .

We correct these using the degrees of freedom. Specifically, we need to correct  and 
with the residual degrees of freedom -  and the model degrees of freedom - .

SSm SSt

SSr

SSr SSm

dfr dfm
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Degrees of freedom
The model degrees of freedom is simply the number of groups - 1; where k = number of
groups:

The residual degrees of freedom is the sum of all the degrees of freedom for each group.

dfm = k − 1

dfr = ∑ dfgroupk
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Mean squared error and the F-ratio
Finally, we divide our sums of squares -  and  by  and  respectively, giving us the mean squared
error of the model -  - and mean squared error of the residuals - .

The ratio of these two quantities is the F-ratio.

In English, the F-ratio is the ratio of the variability explained by the model to variability unexplained by the
model. So, higher is better.

SSm SSr dfm dfr
MSm MSr

MSm =
SSm

dfm

MSr =
SSr

dfr

F =
MSm

MSr
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How to run a one-way between subjectsHow to run a one-way between subjects
ANOVAANOVA
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How to run ANOVA with the afex package
Although the standard R function for ANOVA, aov(), works, it can be fiddly to use.

The afex package provides several easier methods for running ANOVA.

We'll use the aov_ez() function.

noise_aov <- aov_ez(dv = "test_score",
                    between = "noise",
                    id = "participant",
                    data = noise_test)

## Converting to factor: noise

## Contrasts set to contr.sum for the following variables: noise
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Checking the results
noise_aov

## 1  noise 2, 147 1.09 115.39 *** .611   <.001

There's a highly significant effect of the factor noise.

But ANOVA only tells us that there is a difference; not what the difference is!

## Anova Table (Type 3 tests)
## 
## Response: test_score
##   Effect     df  MSE          F  ges p.value

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
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Follow-up contrasts
We can use the emmeans package to get more information about our results.

First, let's run the emmeans() function to get the means for each condition.

means_noise <- emmeans(noise_aov, ~noise)
means_noise

##  noise emmean    SE  df lower.CL upper.CL
##  loud    4.80 0.147 147     4.51     5.09
##  none    7.90 0.147 147     7.61     8.19
##  quiet   6.92 0.147 147     6.63     7.22
## 
## Confidence level used: 0.95

It looks like performance was best is when there was no noise, with the worst performance when there was
loud noise.

48 / 54



Follow-up contrasts
After calculating the means, we can then compare all of the means to each other using the pairs() function.

pairs(means_noise)

##  contrast     estimate    SE  df t.ratio p.value
##  loud - none    -3.097 0.209 147 -14.853  <.0001
##  loud - quiet   -2.124 0.209 147 -10.188  <.0001
##  none - quiet    0.973 0.209 147   4.665  <.0001
## 
## P value adjustment: tukey method for comparing a family of 3 estimates

Note that this corrects the p-values for multiple comparisons. There are three possible comparisons, each with
a significance threshold of p = .05; the more possible comparisons, the more you have to correct for false
positives.
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Visualizing the results
As ever, it's best to support your inferences with visualizations.

afex_plot() from the afex package can automatically create plots from the fitted ANOVA.

afex_plot(noise_aov, x = "noise") + theme_classic()
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Assumptions of ANOVA
Just like the t-test and our linear regressions, normality of the model residuals is assumed.

We can check that with the check_normality() function from the performance package.

library(performance)
plot(check_normality(noise_aov))

## OK: residuals appear as normally distributed (p = 0.605).
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Assumptions of ANOVA
Homogeneity of variance is also assumed.

This can be explicitly tested using the check_homogeneity() function from the performance package.

plot(check_homogeneity(noise_aov))

## OK: There is not clear evidence for different variances across groups (Levene's Test, p = 0.649).

52 / 54



Assumptions of (between-subjects)
ANOVA
Each observation should be independent - i.e. there should be no repeated measures.

Each participant is in one group and one group only, and contributes one data point to that group.
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Next week
Repeated-measures ANOVA.

Factorial and mixed ANOVA.

These are covered in chapters 12-14 of Discovering Statistics Using R.
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